

Type8611eCONTROL

Process controller and Ratio controller Prozessregler und Verhältnisregler Régulateur de process et commande proportionnelle

Quickstart

(Valid from software version B02 / Gültig ab Softwareversion B02 À compter de la version logicielle B02)

We reserve the right to make technical changes without notice. Technische Änderungen vorbehalten. Sous réserve de modifications techniques.

© Bürkert SAS, 2010 – 2015

Operating Instructions 1503/3_EU-ML_00805838 / Original DE

eCONTROL 8611: Process controller and Ratio controller

Contents

1.	QUICKSTART5
	1.1. Symbols5
2.	AUTHORIZED USE
	2.1. Restrictions
	2.2. Predictable Misuse6
3.	BASIC SAFETY INSTRUCTIONS7
4.	GENERAL INFORMATION
	4.1. Contact addresses
5.	SYSTEM DESCRIPTION
	5.1. General Description8
	5.2. Interfaces of the process controller Type 86118
	5.3. Functions
	5.4. The various mounting and installation models9
	5.5. Software
6.	TECHNICAL DATA 10
	6.1. Operating Conditions

	6.2. Conformity with the following standards10
	6.3. General Technical Data10
	6.4. Rating plate description11
	6.5. Electrical Data12
7.	ASSEMBLY13
	7.1. Assembly models13
	7.2. Attachment to a proportional valve14
	7.3. Assembly of the control cabinet model15
8.	ELECTRICAL INSTALLATION17
	8.1. Electrical installation for fitting assembly,
	rail assembly models
	8.2. Electrical installation of the control cabinet model22
9.	OPERATION AND FUNCTION
	9.1. Control and display elements25
	9.2. Operating levels and operating states
	9.3. Funktion of the keys27

burkert FLUID CONTROL SYSTEMS

- -

Type	8611	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

10. FUNCTIONS, PROCESS OPERATING LEVEL
10.1. Operating state AUTOMATIC28
10.2. Operating state MANUAL
10.3. Specific menu options of process and ratio control 30
10.4. Menu options in the MANUAL operating state
10.5. Operating structure of the process operating level in MANUAL operating state31
11. CONFIGURATION LEVEL
11.1. Operating structure of the configuration level
12. OVERVIEW SETTING PARAMETERS45
13. PACKAGING AND TRANSPORT47
14. STORAGE
15. DISPOSAL 47

Ouickstart

OUICKSTART 1

The operating instructions describe the entire life cycle of the device. Keep these instructions in a location which is easily accessible to every user and make these instructions available to every new owner of the device.

Important Safety Information!

Read Quickstart carefully and thoroughly. Study in particular the chapters entitled Basic Safety Instructions and Intended Use.

Quickstart must be read and understood.

The Quickstart explains, for example, how to install and start-up the device.

A detailed description of the device can be found in the operating instructions for positioner Type 8611 eCONTROL.

The operating instructions can be found on the enclosed CD and on the Internet at:

www.burkert.com

1.1. **Symbols**

The following symbols are used in these instructions.

DANGER!

Warns of an immediate danger!

 Failure to observe the warning may result in a fatal or serious injury.

WARNING!

Warns of a potentially dangerous situation!

 Failure to observe the warning may result in serious injuries or death.

CAUTION!

Warns of a possible danger!

 Failure to observe this warning may result in a medium or minor injury.

NOTE!

Warns of damage to property!

indicates important additional information, tips and recommendations.

refers to information in these operating instructions or in other documentation.

 \rightarrow designates a procedure that must be carried out.

2. AUTHORIZED USE

Non-authorized use of the process controller Type 8611 may be a hazard to people, nearby equipment and the environment.

- The process controller is intended for controlling the process variables for pressure, temperature or flow-rate in conjunction with a proportional or process valve and a sensor.
- Do not use the device outdoors.
- Use according to the authorized data, operating conditions and conditions of use specified in the contract documents and operating instructions. These are described in the chapter entitled "Technical Data".
- The device may be used only in conjunction with third-party devices and components recommended and authorized by Bürkert.
- Correct transportation, correct storage and installation and careful use and maintenance are essential for reliable and faultless operation.
- Use the device only as intended.

2.1. Restrictions

If exporting the system/device, observe any existing restrictions.

2.2. Predictable Misuse

- The Type 8611 is not to be used in areas where there is a risk of explosion.
- Do not physically stress the housing (e.g. by placing objects on it or standing on it).

Basic Safety Instructions

3. BASIC SAFETY INSTRUCTIONS

These safety instructions do not make allowance for any

- contingencies and events which may arise during the installation, operation and maintenance of the devices.
- local safety regulations the operator is responsible for observing these regulations, also with reference to the installation personnel.

General Hazardous Situations.

To prevent injury, ensure that:

- any installation work may be carried out by authorized technicians and with the appropriate tools only.
- after an interruption in the power supply or pneumatic supply, ensure that the process is restarted in a defined or controlled manner.
- the device may be operated only when in perfect condition and in consideration of the operating instructions.
- the general rules of technology apply to application planning and operation of the device.

NOTE!

Electrostatic sensitive components / modules!

The device contains electronic components which react sensitively to electrostatic discharge (ESD). Contact with electrostatically charged persons or objects is hazardous to these components. In the worst case scenario, they will be destroyed immediately or will fail after start-up.

- Observe the requirements in accordance with EN 61340-5-1 and 5-2 to minimise or avoid the possibility of damage caused by sudden electrostatic discharge!
- Also ensure that you do not touch electronic components when the power supply voltage is present!

The process controller Type 8611 was developed with due consideration given to the accepted safety rules and is stateof-the-art. Nevertheless, dangerous situations may occur.

Failure to observe this operating manual and its operating instructions as well as unauthorized tampering with the device release us from any liability and also invalidate the warranty covering the devices and accessories!

4. GENERAL INFORMATION

4.1. Contact addresses

Germany

Bürkert Fluid Control Systems Sales Center Christian-Bürkert-Str. 13-17 D-74653 Ingelfingen Tel. + 49 (0) 7940 - 10 91 111 Fax + 49 (0) 7940 - 10 91 448 E-mail: info@de.buerkert.com

International

Contact addresses can be found on the final pages of these printed operating instructions.

And also on the internet at:

www.burkert.com

5. SYSTEM DESCRIPTION

5.1. General Description

The process controller Type 8611 is designed for integration in a closed control circuit and can be used for numerous control tasks in fluid technology. The figure below illustrates the integration of the controller in a closed control circuit.

Fig. 1: Block diagram of a closed control circuit

5.2. Interfaces of the process controller Type 8611

Depending on the controlled system and process, different controller structures and different inputs/outputs are available for measuring

english

the process actual value and for controlling the actuating elements. The diagram below shows the available interfaces of the process controller.

5.3. Functions

The following control tasks can be executed with the process controller Type 8611 eCONTROL.

- Fixed command control (single-loop control circuit)
- Sequential control (external set-point value)
- Ratio control
- Cascade control

Standard signals (current / voltage) and frequency-analog signals can optionally be applied or resistance thermometers (Pt 100) can be connected to the scalable controller inputs.

Outputs for continuous standard signals (current / voltage) or transistor outputs can be used as controller outputs. Valves or other switching actuators can be operated via the transistor outputs. One binary output and up to 2 binary outputs for auxiliary functions are additionally provided.

5.4. The various mounting and installation models

The process controller Type 8611 is available in the following models (see also chapter <u>"7.1. Assembly models</u>"):

- · For installation in a pipeline system
- · For attachment to a proportional valve
- · For wall assembly or for assembly on a rail
- · For installation in a control cabinet

Fig. 2: Interfaces of the process controller Type 8611

Particularities of the control cabinet model: Unlike the remaining assembly models, the cabinet model of type 8611 has not one but two binary outputs.

5.5. Software

In the following description of the menu options and their operating structures, the entire software of the eCONTROL Type 8611 is explained. This complete software scope is only available for the control cabinet model of the eCONTROL Type 8611.

The menu structure may vary depending on the device model (wall, valve, rail or fitting assembly). In accordance with the device model, only menu options that are logically purposeful for the application area can be selected. This pre-selection is made upon delivery of the controller in accordance with the chosen order part number.

6. TECHNICAL DATA

6.1. Operating Conditions

Permitted ambient temperature:	
operation and storage)	0 +70 °C
Protection class:	IP65 to EN 60529

6.2. Conformity with the following standards

CE mark conforms to EMC Directive:

EN61326

6.3. General Technical Data

Materials

Housing, cover:	PC, + 20 % glass fiber
Front plate foil:	Polyester
Screws:	Stainless steel
Multipin:	CuZn, nickel-plated
Wall assembly bracket:	PVC

english

Assembly

Installation position:	Any position
Assembly models:	Attachment to a pipeline with Bürkert flow-rate fitting Type S030 wall assembly, rail assembly, valve assembly, control cabine assembly
Display:	2-line, (see <u>"Fig. 10: Display</u> <u>elements</u> ")
Operating voltage:	Multipin: 3-pin or / and 4-pin M8, 8-pin M12
Power cable:	0.5 mm ² max. cross section, max. 100 m long, screened

6.4. Rating plate description

The rating plate contains important technical data for the specific device. The structure of the rating plate is described below by way of example.

6.4.1. Rating plate of the controllers for wall, rail, valve or fitting assembly

Fig. 3: Example: Rating plate of the controllers for wall, rail, valve or fitting assembly

Rating plate of the control cabinet 6.4.2. model

Fig. 4: Example: Rating plate of the control cabinet model

6.5. **Electrical Data**

Operating voltage:	24 V DC ±10 %, filtered and controlled
Power consumption	without load: approx. 2 W with load: maximum 48 W 100 % ED: 36 W
Controller sampling rate:	300 Hz

6.5.1. Inputs

Set-point value

Standard 4	idard 4 - 20 mA Input i Resoli		impedance: ution:		70 Ω 5.5 μA
Standard 0 - 10 V		Input impedance: Resolution:		dance: :	11.5 kΩ 2,5 mV
Sensors					
Standard 4	Standard 4 - 20 mA		Input impedance: Resolution:		70 Ω 5.5 μA
Frequecy					
Input 1	External se Frequency Input resist Signal type	ensor range: tance: es:	min > 1 Sin (> 3	i. 0.25 Hz kΩ e, rectang 3000 mVs	/ max. 1 kHz yle, triangle ss, max. 30 Vss)
Input 2	Internal Ha Frequency	II senso range:	r min (on flov	i. 0.25 Hz ly in conju v-rate fittir	/ max. 1 kHz inction with Bürkert ng Type S030)
Pt 100 (2-wire)	Measuring Measured Measuring	range: current: error:		0 °C 20 1 mA < 0.5 °C	O° 00

12

Type 8611

Assembly

Input impedance:

Response threshold: Max. frequency: 10 kO

1 kHz

3 ... 30 V

7. ASSEMBLY

7.1. Assembly models

6.5.2. Outputs	5	
Continuous signal	Standard signal 4 - Max. loop resistanc Precision:	20 mA e: 680 Ω 0,5 %
	Standard signal 0 - Maximum current: Precision:	10 V 20 mA 0,5 %
Discontinuous signal	2 transistor outputs PTM control Control frequency: Max. resolution:	for PWM or 1.2 kHz 20 Hz 16 bit (depending on frequency)
	Max. current per unit area: Switching voltage:	1.5 A 24 V DC

Binary outputTransistor output (PNP) configurable
Max. current per
unit area:1.5 A
Switching voltage:1.5 A
24 V DCSensor supply:24 V DC

Total load for all outputs:

Binary input

1,5 A

Tab. 1: Assembly models

7.1.1. Assembly accessories

Model	Accessories	Order no.		
Installation in pipeline	Flow-rate fitting, Type S030	See data sheet S030		
Rail assembly	Rail assembly Adapter for rail assembly 655980			
Wall assembly Adapter for wall assembly 427098				
The adapters for the wall and rail assembly are included in the scope of supply of the assembly model.				

Tab. 2: Assembly accessories

7.2. Attachment to a proportional valve

Attach the process controller Type 8611 to a proportional valve as described below.

 \rightarrow Loosen the 4 screws at the front of the process controller.

NOTE!

Be careful when opening the process controller so as not to damage the internal cabling.

- Remove the cover carefully from the housing without jerks.
- \rightarrow Remove the cover carefully from the housing.
- \rightarrow Place the supplied flat seal over the contact tabs.
- \rightarrow Attach the housing of the process controller on the contact tabs and fasten with the valve screw.
- \rightarrow Check the correct position of the profile gasket at the housing of the process controller.
- \rightarrow Place cover on the housing of the process controller and fasten with 4 screws.

If necessary, the cover can also be mounted in a position rotated by 90° to the left or the right.

Assembly

Fig. 5: Attachment of the process controller to a proportional valve

7.3. Assembly of the control cabinet model

Fig. 6: Device dimensions and control panel recess

7.3.1. Installation in a control cabinet

- Prepare control panel recess with the dimensions 45mm x 45mm (corner radius 3mm).
- Place the supplied seal on the housing.
- Insert the controller from the front into the control panel recess.
- From the rear, snap the 4 supplied fastening elements into place and fasten using a screwdriver.

Installation elements Fig. 7:

Installed controller Fig. 8:

Recommended line cross sections for the control cabinet model:

	Cross section min.	Cross section max.	Minimum length
Cross section for flexible lines	0.2 mm ²	1.5 mm²	10 mm (stripping)
Cross section for flexible lines with cable end sleeve without plastic sleeve	0.25 mm²	1.5 mm²	10 mm
Cross section for flexible lines with cable end sleeve with plastic sleeve	0.25 mm²	0.75 mm²	10 mm

Tab. 3: Recommended line cross sections

8. ELECTRICAL INSTALLATION

8.1. Electrical installation for fitting assembly, wall assembly, valve assembly or rail assembly models

8.1.1. Connection versions

Connector	Connector view	Configuration	
Circular plug-in connector M12, 8-pole	$7 \overbrace{1}{6} \overbrace{4}{5} 4$	Power supply voltage, set-point input 4 - 20 mA / 0 - 10 V, process actual value or position set- point output 4 - 20 mA / 0 - 10 V, binary input, binary output Note! A straight plug (female) is recom- mended for the connecting cable, as the alignment of the plug can vary.	
Circular plug-in connector M8, 3-pole		Connection sensor (4 - 20 mA / 0 - 10 V, Pt 100 or frequency) and sensor supply 24 V DC	

Connector	Connector view	Configuration	
Circular plug-in connector M8, 4-pole		Connection actuating element • Proportional valve (1 x PWM) • Process valve (1 x PTM) • Manipulated variable 4 - 20 mA / 0 - 10 V and sensor supply 24 V DC (only ID 182383)	
DIN-EN 175301		Connection for direct assembly on proportional valve (1 x PWM) or open/closed valve (1 x PTM)	

Tab. 4:Connection versions for assembly on flow-rate fitting, wall
assembly, rail assembly or valve assembly

8.1.2. Pin assignment

Circular plug-in connector M12, 8-pole

A straight connector (female) is recommended for the connecting cable as the orientation of the connector may vary.

Connector diagram	Pin	Color	Configuration
5	1	white	24 V DC power supply
7	2 (DIN2)	brown	Binary input (<i>B_IN</i>)
1 2	3	green	GND – Power supply, binary input, binary output
	4 (AOUT)	yellow	4 - 20 mA or 0 - 10 V analog output (process value or manipulated variable for valve)
	5 (<i>AIN2</i>)	grey	4 - 20 mA or 0 - 10 V analog input (set-point value / ratio)
	6	pink	GND – Analog output
	7	blue	GND – Analog input (set-point value / ratio)
	8 <i>(BO1)</i>	red	(+) Binary output (B_O1)

Tab. 5: Configuration of circular plug-in connector M12, 8-pole

Wire colors when using standard cables (e.g. from Lumberg, Escha)

8.1.3. Sensor connection

Circular plug-in connector M8, 3-pole

Input signal	Pin	Color	Configu- ration	External circuit
4 - 20 mA 2-wire	1	brown	+ 24 V sensor supply	1 o_ I→ 24 V DC Transmitter
supply of Type 8611	3	blue	not connected	
(AIN1)	4	black	Signal input (source)	4 0 4 - 20 mA
4 - 20 mA / 0 - 10 V	1	brown	+ 24 V sensor supply	1 0 ^{24 V DC}
3-wire supply of	3	blue	GND	3 O Transmitter
Type 8611 (<i>AIN1</i>)	4	black	Signal input (source)	4 0 4 - 20 mA / 0 - 10 V

Electrical Installation

Input signal	Pin	Color	Configu- ration	External circuit
	1	brown	not connected	
Pt 100 (2-wire)	3	blue	GND Pt 100	3 Pt 100
(AIN3)	4	black	(+) Pt 100 (power supply)	40

FLUID CONTROL SYSTEM

Tab. 6:Sensor connection: Configuration of circular plug-in
connector M8, 3-pole

8.1.4. Valves connection

Circular plug-in connector M8, 4-pole

Output signal:	Pin	Color	Configuration	External circuit
	1	brown	not connected	
PWM	2	white	not connected	Proportional valve
(MODE = SCV)	3	blue	(–) PWM (valve2)	30
	4 (BO4)	black	(+) PWM (valve2)	40
3-point (MODE = PCV)	1 (<i>B</i> O3)	brown	(+) Aeration (valve 1)	1 ONC valve
	2	white	(–) Aeration (valve 1)	
	3	blue	(-) Deaeration (valve 2)	3 O NO valve
	4 (BO4)	black	(+) Deaeration (valve 2)	40

Output signal:	Pin	Color	Configuration	External circuit
1) 4 - 20 mA	1 (BO3)	brown	+ 24 V DC supply	1 Q Supply of
	2	white	GND (4 - 20 mA or 0 - 10 V)	20
0 - 10 V	3	blue	GND supply	30 M
(MODE = 4 - 20 / 0 - 10)	4 (AOUT)	black	+ 4 - 20 mA or 0 - 10 V manipulated variable	40
3-point (MODE = 3P – T)	1 (BO3)	brown	(+) Valve 1	NC / NO valve
	2	white	(-) Valve 1	
	3	blue	(-) Valve 2	NC / NO valve
	4 (BO4)	black	(+) Valve 2	40

Electrical Installation

Circular plug-in connector M12, 8-pole

Tab. 7: Configuration of circular plug-in connector M8, 4-pole

Output signal:	Pin	Color	Configu- ration	External circuit
2) 4 - 20 mA or 0 - 10 V (<i>MODE</i> =	4 (AOUT)	yellow	4 - 20 mA or 0 - 10 V manipu- lated variable	+ 24 V 4 0 M
4 - 20 / 0 - 10)	6	pink	GND – Analog output	60 GND (24 V)
2) Available for all models except for identification number 182383				

Tab. 8: Configuration of circular plug-in connector M12, 8-pole

8.2. Electrical installation of the control cabinet model

<u> wa</u>

WARNING!

Risk of injury from incorrect installation!

Incorrect installation can damage or destroy the Type 8611 eCONTROL.

• The electrical installation may be performed by authorized electricians only!

Fig. 9: Control cabinet model; connection PCB with spring terminals and jumpers

MAN_1000141154_ML_Version: GStatus: RL (released | freigegeben) printed: 22.09.2017 22 english

8.2.1. Terminal assignment

Terminal block 1

Electrical Installation

Tab. 9:

valve 2

(3P – T)

Terminal	Configu- ration	External circuit
5 (BO3)	(+) Aeration valve (<i>PCV</i>) or valve 1 (2 <i>P</i> – <i>T</i> or 3 <i>P</i> – <i>T</i>)	$MODE = 2P - T \qquad MODE = PCV$ or $3P - T$ $5 \circ $
6	(-) Aeration valve (PCV) or valve 1 ($2P - T$ or 3P - T)	6 O NC / NO NC valve max. 1 A valve max. 1 A
7 (BO4)	(+) Proportional valve (SCV), bleed valve (PCV) or valve 2 (3P - T)	MODE = 3P - T $RODE = SCV$
8	(-) Proportional valve (SCV), bleed valve (PCV) or	MODE = PCV

Terminal block 2

Terminal	Configuration	External circuit
9	GND – Analog output	9 0 GND
10 (<i>AOUT</i>)	(+) Analog output (process value or manipulated variable for valve	10 0 → 4 - 20 mA / 0 - 10 V
11	GND – Sensor, actuating element	11 O —— GND
12	24 V DC sensor supply or actuating element	12 0 24 V DC
13	not used	not used
14 (<i>AIN2</i>)	(+) External default of set-point value / ratio 4 - 20 mA / 0 - 10 V	14
15	(+) 5 V DC sensor supply (max. 20 mA)	15 0 → 5 V DC (1, 11 or 23 0 → GND)
16	RS485_COM	16 O RS485_COM
17	RS485_A (+)	17 O RS485_A
18	RS485_B (–)	18 O RS485_B

Tab. 10: Configuration of terminal block 2

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

valvel max. 1 A

Configuration of terminal block 1

NO

Туре 8611 Electrical Installation

Terminal block 3

Terminal	Configuration	External circuit
19	GND – Pt 100, RTD	19 o ← Pt 100
20 (<i>AIN3</i>)	(+) Pt 100, RTD (power supply)	20 o (0 200 °C)
21	GND – Analog input	21 O —— A-GND
22 (AIN1)	(+) Process value input 4 - 20 mA / 0 - 10 V	22 0 ← 4 - 20 mA / 0 - 10 V (source) 21 0 ← A-GND
23	GND – Sensor, actuating element	23 O GND
24	24 V DC sensor supply or actuating element	24 0 → 24 V DC - Out (max. 1 A) 23 0 GND

Terminal	Configuration	External	circuit
25 Supply of Type 8611 (<i>DIN3</i>)	Frequency input 2 (NPN or PNP) Q_2 for ratio control (<i>MODE</i> = <i>RATI</i>)	Jumper 2	Supply of 8611 12 or O 24 V DC 24 11 or O 23 Clock
25 External supply (<i>DIN3</i>)	Frequency input 2 (NPN or PNP) Q_2 for ratio control (<i>MODE</i> = <i>RATI</i>)	Jumper 2 NPN	External supply Supply 11 or O 23 25 O Clock GND
26 (<i>DIN2</i>)	(+) Binary input	1, 11 or	26 0 2,7 V (log. 0) max. 3 30 V 1 kHz (log. 1) 23 0 GND

Terminal	Configuration	External	circuit
27	Frequency	Jumper 1	Supply of 8611
Supply of Type	input 1 (NPN or PNP)	NPN	12 or 024 V DC
(DIN1)	flow-rate / Q_1 for ratio control (MODE = RATI)	PNP	11 or oGND 23 27 o← Clock
27 External supply (<i>DIN1</i>)	Frequency input 1 (NPN or PNP) Actual value flow-rate / Q_1 for ratio control (<i>MODE</i> = <i>RATI</i>)	Jumper 1 NPN	External supply Suply 11 or OGND Trans- 23 27 OGClock GND

Tab. 11: Configuration of terminal block 3

9. OPERATION AND FUNCTION

9.1. Control and display elements

The control and display element of the eCONTROL Type 8611 is equipped with 3 buttons and an LCD-Matrix display.

9.1.1. Display elements

Fig. 10: Display elements

9.1.2. Control elements

Arrow keys

- Change the display at the process operating level in AUTOMATIC operating state
- Change the menu options in MANUAL operating mode and at the configuration level
- Entering of numerical values

ENTER button

- Switches between the operating states AUTOMATIC and MANUAL
- Switches between operating and configuration level
- Selection of menu option
- Take over settings

The detailed description of the function can be found in chapter "9.3. Funktion of the keys".

9.2. Operating levels and operating states

2 operating levels and 2 operating states AUTOMATIC and MANUAL are available for the operation and setting of the eCONTROL Type 8611.

Level 1: Process operating level

At level 1, the user can switch between 2 operating states AUTOMATIC and MANUAL.

Operating state: AUTOMATIC: The normal control mode is executed and monitored.

MANUAL: Quick access to important functions and test functions. The operating state MANUAL is indicated on the display by a hand symbol.

Level 2: Configuration level

At level 2, the user can change the basic settings of the controller.

After switching on the operating voltage, the controller is at the process operating level and in the AUTOMATIC operating state.

When the operating voltage is applied, the software version will light up on the display for approx. 2 seconds.

If the ENTER key is pressed during these 2 seconds, the subversion is displayed. After this, the controller is once again at the process operating level. Operation and Function

9.2.1. Switching between the operating levels and operating states

The ENTER key is pressed to change the operating level and operating state (see Fig. 11).

Any changes made within the configuration level are only stored after returning to the process operating level.

Changes in the Manual operating state can be made while the controller is running.

Fig. 11: Changing the operating level and operating state

9.3. Funktion of the keys

The device is operated using two arrow keys and one ENTER key. The function of these in respect of the operating level and the operating state is shown in the table below.

Operating level	Operating state	09		
Level 1: Process operating level	AUTO- MATIC	Switch display between actual value, set-point value and manipulated variable		 Press key briefly (< 1 s): Switches to operating state MANUAL Press and hold key (> 5 s): Switches to configuration level
	MANUAL	Switches to the last menu option Entering of Increase value	Switches to the next menu option f values Change by one position to the left	 Selection of menu option Take over settings Switches to operating state AUTOMATIC (for display BACK)

Operating level	Operating state	09		ENER 2
Level 2: Configu- ration level		Switches to the last menu option Entering or Increase value	Switches to the next menu option f values Change by one position to the left	 Selection of menu option Take over settings Switches to process oper- ating level and to operating state AUTO- MATIC (for display <i>END</i>)

Tab. 12: Function of the keys

10. FUNCTIONS, PROCESS OPERATING LEVEL

10.1. Operating state AUTOMATIC

After switching on the operating voltage, the controller is at the process operating level and in the AUTOMATIC operating state. The normal control mode is executed and monitored.

10.1.1. Displays in the AUTOMATIC operating state

Press the arrow keys to switch between 4 different displays for monitoring the control operation. Which of these displays should be shown as start display after applying the operating voltage can be defined in the *DSPL* menu (see Operating structure of the configuration level Fig. 26).

	025.5 <i>LIM</i>	Display process actual value The display of the unit depends on the selection made in the <i>UNIT</i> menu (see Operating structure of the configuration level Fig. 16). For $MODE = T - F$ or $T + F$ the display switches between temperature and flow-rate. For $MODE = RATI$ the display switches between flow-rate Q1 and Q2
	030.0 SET RFAC 025.5 030.0	 Display set-point value The display depends on the selection made in the MODE menu (see Operating structure of the configuration level Fig. 15). SET = Display for process control RFAC = Display for ratio control For MODE = T - F or T + F the display switches between flow-rate set-point (SP_Q) and temperture set-point (SP_T). For MODE = RATI the display switches between ratio factor (RFAC) and flow-rate set-point (SPQ1). Display process actual value Display set-point value
	065.0 <i>PRZV</i> <i>mA</i> <i>V</i>	Display manipulated variable for valve Display depends on the actuating element selected in the MODE menu (see Operating structure of the configuration level Fig. 15). PRZV = Display pulse duty factor for solenoid valve mA = Display manipulated variable in mA V = Display manipulatec variable in V

Fig. 12: Displays in the AUTOMATIC operating state

10.2. Operating state MANUAL

Briefly press (< 1 s) the ENTER key to go to the MANUAL operating state.

The operating state is indicated on the display by a hand symbol.

10.3. Specific menu options of process and ratio control

The display of some menu options differs for the process and the ratio control. This is described in detail in the respective menu descriptions.

The control type is specified by the control variable selected in the *MODE* menu:

Process control: is active if all control variables have been selected in the *MODE* menu except for*RATI*.

Ratio control
 is active if the *RATI* control variable has
 been selected in the *MODE* menu

10.4. Menu options in the MANUAL operating state

SET	Set-point value default for process control
	 Menu option is displayed for process control. Is not available if external set-point value default is selected.
RFAC	 Ratio factor default for ratio control Menu option is only displayed for ratio control (<i>MODE = RATI</i>). Is not available if external set-point value default is selected.
BACK	When <i>BACK</i> is displayed on the display, press the ENTER key briefly to switch to AUTOMATIC oper- ating state. When an arrow key is pressed, the next or respec- tively the previous menu option is displayed.
TEST	Display of the analog inputs and outputs and the digital inputs.
PARA	Adjusting the controller parameters (Code must be entered if code protection is activated).
VALV	Manual opening and closing of the connected valves.

Tab. 13: Menu options of the process operating level

english

10.5. Operating structure of the process operating level in MANUAL operating state

Fig. 13: Operating structure of the process operating level in MANUAL operating state - 1 of 2

Fig. 14: Operating structure of the process operating level in MANUAL operating state - 2 of 2

11. CONFIGURATION LEVEL

11.1. Operating structure of the configuration level

Fig. 15: Operating structure of the configuration level - 1 of 12

Fig. 16: Operating structure of the configuration level - 2 of 12

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017 english

34

Туре 8611

Configuration Level

Fig. 17: Operating structure of the configuration level - 3 of 12

Fig. 18: Operating structure of the configuration level - 4 of 12

MAN 1000141154 ML Version; GStatus; RL (released | freigegeben) printed; 22.09.2017 36 english
Туре 8611

Configuration Level

Fig. 19: Operating structure of the configuration level - 5 of 12

Fig. 20: Operating structure of the configuration level - 6 of 12

Туре 8611

Configuration Level

<i>FILT</i> Enter filter factor (2 - 20)						
Selection of controller parameters <i>PARA KP1</i> <i>KP1</i> , Pproportional coefficient 1						
$\begin{array}{c c} \hline & KP2 \\ \hline & KP2, \text{ proportional coefficient } 2 \\ \hline & TREG \\ \hline \end{array}$						
$\boxed{TN^{*}}$ Reset time [s] (display only for $MODE = SCV, 0 - 10, 4 - 20, 2P - T, 3P - T,)$						
DEAD Dead zone absolute. Unit and display of decimal place analogous to UNIT.						
KP_T^{*} Proportional coefficient for cascaded temperature control (display only for $MODE = T + F$)						
TN T^{*} Reset time in [s] for cascaded temperature control (display only for $MODE = T + F$)						
Dead zone absolute for cascaded temperature control (display only for $MODE = T + F$).						
Effective direction						
<i>INV</i> NO Not inverted or direct control						
YES Inverted control						
Zero point shut-off (if default < 2 % of the set-point value range). Display only for $INV = NO$						
ZERO → NO Zero point shut-off is deactivated						
YES Zero point shut-off is activated						
B IN $Definition of start value for manipulated variable(display only for MODE = SCV, 0 - 10, 4 - 20, 1P - T, 3P - T)$						

Fig. 21: Operating structure of the configuration level - 7 of 12

Fig. 22: Operating structure of the configuration level - 8 of 12

Type 8611

Configuration Level

Fig. 23: Operating structure of the configuration level - 9 of 12

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

english

Fig. 24: Operating structure of the configuration level - 10 of 12

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017 42 english

Type 8611

Configuration Level

Fig. 25: Operating structure of the configuration level - 11 of 12

Fig. 26: Operating structure of the configuration level - 12 of 12

MAN 1000141154 ML Version; GStatus; RL (released | freigegeben) printed; 22.09.2017 44 english

Overview Setting parameters

12. OVERVIEW SETTING PARAMETERS

		Continuous control		Quasi-continuous control			Discontinuous control		
	Actuating element	Proportional valve	Linear actu element	ating	Process valve	Open/closed valve	Open/closed rotary actuator	Open/closed valve	Open/closed valve
ve parameter (<i>MODE</i>)	Program MODE	SCV	0-10	4-20	PCV	2P – T	3P – T	2P – T	3P – T
	Control frequency	PWM	[-]	[-]	[-]	[-]	[-]	[-]	[-]
	Operating principle	[-]	[-]	[-]	[-]	NC/NO	NC/NO	NC/NO	NC/NO
	Minimum control	[-]	[-]	[-]	TMN1/TMN2	TMN1	TMN1/TMN2	TMN1	TMN1/TMN2
Va	time				[ms]	[ms]	[ms]	[ms]	[ms]
	Control structure	PI oder	P (TN = 99	99)	Р	PI oder P (TN = 9999)	P (KP1 =	= 9999)
	Proportional gain	KP1	KP1		KP1	KP1	KP1	KP1	KP1 / KP2
1RA)		[%/PV]	[%/PV]		[%/PV]	[%/PV]	[%/PV]	(=9999)	(=9999)
	Reset time	<i>TN</i> [s]	<i>TN</i> [s]	<i>TN</i> [s]	[-]	<i>TN</i> [s]	<i>TN</i> [s]	[-]	[-]
r (P)	Cycle time	[-]	[-]	[-]	TREG [s]	TREG [s]	TREG [s]	[-]	[-]
ete	Dead zone	DEAD	DEAD	DEAD	DEAD	DEAD	DEAD	DEAD	DEAD
E		[Δ PV]	[Δ PV]	[Δ PV]	[Δ PV]	[Δ PV]	[Δ PV]	[Δ PV]	$[\Delta PV]$
ara	Control direction	INV	INV	INV	INV	INV	INV	INV	INV
d la		(Yes/No)	(Yes/No)	(Yes/No)	(Yes/No)	(Yes/No)	(Yes/No)	(Yes/No)	(Yes/No)
ltro	Zero point shut-off	ZERO	ZERO	ZERO	ZERO	ZERO	ZERO	ZERO	ZERO
S		(Yes/No)	(Yes/No)	(Yes/No)	(Yes/No)	(Yes/No)	(Yes/No)	(Yes/No)	(Yes/No)
Ŭ	Startposition of	STRT	STRT	STRT	[-]	STRT	STRT	[-]	[-]
	control	[0-100]	[0-10]	[[4-20]		[0-100]	[0-100]		

Tab. 14: Overview setting parameters

Additional control parameters for setting a cascaded control loop (MODE = T + F)

		Continuous control			Quasi-continuous control			Discontinuous control	
	Control structure	Pl oder P (TN = 9999)		Р	Pl oder P (TN = 9999)		P (KP1 = 9999)		
neter	Proportional gain	<i>KP_T</i> [%/°K]	<i>KP_T</i> [%/°K]	<i>KP_T</i> [%/°K]	<i>KP_T</i> [%/°K]	<i>KP_T</i> [%/°K]	<i>KP_T</i> [%/°K]	<i>KP_T</i> [%/°K]	<i>KP_T</i> [%/°K]
erparan (PARA)	Reset time	<i>TN_T</i> [s]	<i>TN_T</i> [s]	TN_T [s]	<i>TN_T</i> [s]	<i>TN_T</i> [s]	<i>TN_T</i> [s]	TN_T [s]	<i>TN_T</i> [s]
Regl	Dead zone	<i>DEAD</i> [∆ °K]	<i>DEAD</i> [∆ ⁰K]	<i>DEAD</i> [∆ °K]	<i>DEAD</i> [∆ °K]	<i>DEAD</i> [∆ °K]	<i>DEAD</i> [Δ °K]	DEAD [∆ °K]	<i>DEAD</i> [Δ °K]

Tab. 15: Overview: additional control parameters for setting a cascaded control loop

Type 8611 Packaging and Transport

13. PACKAGING AND TRANSPORT

NOTE!

Transport damages!

Inadequately protected equipment may be damaged during transport.

- During transportation protect the device against moisture and dirt in shock-resistant packaging.
- Do not allow the temperature to exceed or drop below the permitted storage temperature.

14. STORAGE

NOTE!

Incorrect storage may damage the device.

- Store the device in a dry and dust-free location!
- Storage temperature: 0 +70 °C.

15. DISPOSAL

→ Dispose of the device and packaging in an environmentally friendly manner.

NOTE!

Damage to the environment caused by device components contaminated with media.

Observe applicable disposal regulations and environmental regulations.

Observe national waste disposal regulations.

eCONTROL 8611: Prozessregler und Verhältnisregler

Inhalt:

1.	DER QUICKSTART	51
	1.1. Darstellungsmittel	51
2.	BESTIMMUNGSGEMÄSSE VERWENDUNG	52
	2.1. Beschränkungen	52
	2.2. Vorhersehbarer Fehlgebrauch	52
3.	GRUNDLEGENDESICHERHEITSHINWEISE	53
4.	ALLGEMEINE HINWEISE	54
	4.1. Kontaktadressen	54
5.	SYSTEMBESCHREIBUNG	54
	5.1. Allgemeine Beschreibung	54
	5.2. Schnittstellen des Prozessreglers Typ 8611	- 4
	J.2. Johningstenen des Frozessiegiers typ oort	54
	5.3. Funktionen	54 55
	5.2. Schmitstellen des Prozessregiers Typ 6611 5.3. Funktionen 5.4. Die verschiedenen An- und Einbauvarianten	54 55 55
	 5.2. Schmitstenen des Prozessregiers Typ 8611	54 55 55 56
6.	 5.2. Schmitstenen des Prozessregiers Typ 8611 5.3. Funktionen 5.4. Die verschiedenen An- und Einbauvarianten 5.5. Software TECHNISCHE DATEN 	54 55 55 56

	6.2. Konformität mit folgenden Normen5	6
	6.3. Allgemeine Technische Daten	6
	6.4. Typschildbeschreibung5	7
	6.5. Elektrische Daten5	8
7.	MONTAGE	9
	7.1. Montagevarianten5	9
	7.2. Anbau an ein Proportionalventil6	0
	7.3. Montage der Schaltschrankvariante	1
8.	ELEKTRISCHE INSTALLATION6	3
	8.1. Elektrische Installation für Montagevarianten Fittingmontage, Wandmontage, Ventilmontage	
	oder Hutschienenmontage6	3
	8.2. Elektrische Installation der Schaltschrankvariante6	8
9.	BEDIENUNG UND FUNKTION	′1
	9.1. Bedien- und Anzeigeelemente7	'1
	9.2. Bedienebenen und Betriebszustände7	2
	9.3. Funktion der Tasten7	3

74
74
76
76
76
77
79
79
91
93
93

Der Quickstart

1. DER QUICKSTART

Der Quickstart beschreibt den gesamten Lebenszyklus des Gerätes. Bewahren Sie diese Anleitung so auf, dass sie für jeden Benutzer gut zugänglich ist und jedem neuen Eigentümer des Gerätes wieder zur Verfügung steht.

Wichtige Informationen zur Sicherheit!

Lesen Sie den Quickstart sorgfältig durch. Beachten Sie vor allem die Kapitel *Grundlegende Sicherheitshinweise* und *Bestimmungsgemäße Verwendung.*

• Der Quickstart muss gelesen und verstanden werden.

Der Quickstart erläutert beispielhaft die Montage und Inbetriebnahme des Gerätes.

Die ausführliche Beschreibung des Gerätes finden Sie in der Bedienungsanleitung für den Typ 8611 eCONTROL.

Die Bedienungsanleitung finden Sie auf der beigelegten CD oder im Internet unter:

www.buerkert.de

1.1. Darstellungsmittel

In dieser Anleitung werden folgende Darstellungsmittel verwendet.

GEFAHR!

Warnt vor einer unmittelbaren Gefahr!

 Bei Nichtbeachtung sind Tod oder schwere Verletzungen die Folge.

Warnt vor einer möglicherweise gefährlichen Situation!

 Bei Nichtbeachtung können schwere Verletzungen oder Tod die Folge sein.

Warnt vor einer möglichen Gefährdung!

• Nichtbeachtung kann mittelschwere oder leichte Verletzungen zur Folge haben.

HINWEIS!

Warnt vor Sachschäden!

Wichtige Tipps und Empfehlungen.

verweist auf Informationen in dieser Anleitung oder in anderen Dokumentationen.

 \rightarrow markiert einen Arbeitsschritt, den Sie ausführen müssen.

BESTIMMUNGSGEMÄSSE 2. VERWENDUNG

Bei nicht bestimmungsgemäßem Einsatz des Prozessreglers Tvp 8611 können Gefahren für Personen. Anlagen in der Umgebung und die Umwelt entstehen.

- Der Prozessregler ist dafür bestimmt, in Verbindung mit einem Proportional- oder Prozessventil und einem Sensor die Prozessgröße für Druck, Temperatur oder Durchfluss zu regeln.
- Das Gerät nicht im Außenbereich einsetzen.
- Für den Einsatz die in den Vertragsdokumenten und der Bedienungsanleitung spezifizierten zulässigen Daten, Betriebs- und Einsatzbedingungen beachten. Diese sind im Kapitel" Technische Daten" beschrieben.
- Das Gerät nur in Verbindung mit von Bürkert empfohlenen bzw. zugelassenen Fremdgeräten und -komponenten einsetzen.
- Voraussetzungen f
 ür den sicheren und einwandfreien Betrieb sind sachgemäßer Transport, sachgemäße Lagerung und Installation sowie sorgfältige Bedienung und Instandhaltung.
- Setzen Sie das Gerät nur bestimmungsgemäß ein.

2.1. Beschränkungen

Beachten Sie bei der Ausfuhr des Systems/Gerätes gegebenenfalls bestehende Beschränkungen.

Vorhersehbarer Fehlgebrauch 2.2.

- einsetzen.
- Belasten Sie das Gehäuse nicht mechanisch (z. B. durch Ablage von Gegenständen oder als Trittstufe).

Grundlegende Sicherheitshinweise

3. GRUNDLEGENDE SICHERHEITSHINWEISE

Diese Sicherheitshinweise berücksichtigen keine

- Zufälligkeiten und Ereignisse, die bei Montage, Betrieb und Wartung der Geräte auftreten können.
- ortsbezogenen Sicherheitsbestimmungen, f
 ür deren Einhaltung, auch in Bezug auf das Montagepersonal, der Betreiber verantwortlich ist.

Allgemeine Gefahrensituationen.

Zum Schutz vor Verletzungen ist zu beachten:

- Installationsarbeiten dürfen nur von autorisiertem Fachpersonal mit geeignetem Werkzeug ausgeführt werden.
- Nach einer Unterbrechung der elektrischen oder pneumatischen Versorgung ist ein definierter oder kontrollierter Wiederanlauf des Prozesses zu gewährleisten.
- Das Gerät darf nur in einwandfreiem Zustand und unter Beachtung der Bedienungsanleitung betrieben werden.
- Für die Einsatzplanung und den Betrieb des Gerätes müssen die allgemeinen Regeln der Technik eingehalten werden.

HINWEIS!

Elektrostatisch gefährdete Bauelemente / Baugruppen!

Das Gerät enthält elektronische Bauelemente, die gegen elektrostatische Entladung (ESD) empfindlich reagieren. Berührung mit elektrostatisch aufgeladenen Personen oder Gegenständen gefährdet diese Bauelemente. Im schlimmsten Fall werden sie sofort zerstört oder fallen nach der Inbetriebnahme aus.

- Beachten Sie die Anforderungen nach EN 61340-5-1 und 5-2, um die Möglichkeit eines Schadens durch schlagartige elektrostatische Entladung zu minimieren bzw. zu vermeiden!
- Achten Sie ebenso darauf, dass Sie elektronische Bauelemente nicht bei anliegender Versorgungsspannung berühren!

Die Prozessregler Typ 8611 wurde unter Einbeziehung der anerkannten sicherheitstechnischen Regeln entwickelt und entspricht dem Stand der Technik. Trotzdem können Gefahren entstehen.

Bei Nichtbeachtung dieser Bedienungsanleitung und ihrer Hinweise sowie bei unzulässigen Eingriffen in das Gerät entfällt jegliche Haftung unsererseits, ebenso erlischt die Gewährleistung auf Geräte und Zubehörteile!

4. ALLGEMEINE HINWEISE

4.1. Kontaktadressen

Deutschland

Bürkert Fluid Control Systems Sales Center Christian-Bürkert-Str. 13-17 D-74653 Ingelfingen Tel. + 49 (0) 7940 - 10 91 111 Fax + 49 (0) 7940 - 10 91 448 E-mail: info@de.buerkert.com

International

Die Kontaktadressen finden Sie auf den letzten Seiten der gedruckten Bedienungsanleitung.

Außerdem im Internet unter:

www.burkert.com

5. SYSTEMBESCHREIBUNG

5.1. Allgemeine Beschreibung

Der Prozessregler Typ 8611 ist für die Einbindung in einen geschlossenen Regelkreis vorgesehen und kann für vielfältige Regelaufgaben in der Fluidtechnik verwendet werden. Das nachfolgende Bild zeigt die Integration des Reglers in einen geschlossenen Regelkreis.

Bild 1: Blockschaltbild eines geschlossenen Regelkreises

5.2. Schnittstellen des Prozessreglers Typ 8611

Je nach Regelstrecke und Prozess stehen verschiedene Reglerstrukturen und verschiedene Ein-/Ausgänge für die Messung des

Prozess-Istwertes und für die Ansteuerung der Stellglieder zur Verfügung. Die nachfolgende Übersicht zeigt die verfügbaren Schnittstellen des Prozessreglers.

5.3. Funktionen

Mit dem Prozessregler Typ 8611 eCONTROL können folgende Regelaufgaben durchgeführt werden:

- Festwertregelung (einschleifiger Regelkreis)
- Folgeregelung (externer Sollwert)
- Verhältnisregelung
- Kaskadenregelung

An die skalierbaren Reglereingänge können wahlweise Normsignale (Strom / Spannung) und frequenzanaloge Signale angelegt oder Widerstandsthermometer (Pt 100) angeschlossen werden.

Als Reglerausgänge sind Ausgänge für stetige Normsignale (Strom / Spannung) oder Transistorausgänge nutzbar. Über die Transistorausgänge können Ventile oder andere schaltende Stellglieder betätigt werden. Außerdem sind ein Binäreingang und bis zu 2 Binärausgänge für Zusatzfunktionen vorhanden.

5.4. Die verschiedenen An- und Einbauvarianten

Den Prozessregler Typ 8611 gibt es in folgenden Varianten (siehe auch Kapitel "7.1. Montagevarianten"):

- Zum Einbau in ein Rohrleitungssystem
- Zum Anbau an ein Proportionalventil
- Für die Wandmontage oder zur Montage auf eine Hutschiene
- Zum Einbau in einen Schaltschrank

Bild 2: Schnittstellen des Prozessreglers Typ 8611

Besonderheiten der Schaltschrankvariante: Bei der Schaltschrankvariante des Typs 8611 stehen abweichend zu den übrigen Montagevarianten nicht nur einer sondern zwei Binärausgänge zur Verfügung.

5.5. Software

In der nachfolgenden Beschreibung der Menüpunkte und ihrer Bedienstrukturen wird die komplette Software des eCONTROL Typ 8611 erklärt. Dieser komplette Softwareumfang steht nur bei der Schaltschrankvariante des eCONTROL Typ 8611 zur Verfügung.

Je nach Gerätevariante (Wand-, Ventil-, Hutschienen- oder Fittingmontage) kann die Menüstruktur abweichen.

Entsprechend der Gerätevariante werden nur die für den Einsatzbereich logisch sinnvollen Menüpunkte zur Auswahl angeboten. Diese Vorauswahl erfolgt bei Auslieferung des Reglers entsprechend der gewählten Bestell-Identnummer.

TECHNISCHE DATEN 6.

6.1. Betriebsbedingungen

Zulässige Umgebungstemperatur:	
(Betrieb und Lagerung)	0 +70 °C
Max. zulässige Luftfeuchtigkeit:	\leq 80 %, nicht kondensierend
Schutzart:	IP65 nach EN 60529

6.2. Konformität mit folgenden Normen

CE - Zeichen konform bzgl.	
EMV-Richtlinie:	EN61326

6.3. Allgemeine Technische Daten

Werkstoffe

Gehäuse, Deckel:	PC, + 20 % Glasfase
Frontplattenfolie:	Polyester
Schrauben:	Edelstahl
Multipin:	CuZn, vernickelt
Wandmontagehalter:	PVC

Montage

Einbaulage:	beliebig
Montagevarianten:	Anbau an eine Rohrleitung mit Bürkert Durchflussfitting Typ S030 Wandmontage, Hutschie- nenmontage, Ventilmontage, Schaltschrankmontage
Anzeige:	2-zeilig (siehe <u>"Bild 10:</u> Anzeigeelemente")
Betriebsspannung:	Multipin: 3-Pin oder / und 4-Pin M8, 8-Pin M12
Stromzuleitungskabel:	0,5 mm² max. Querschnitt, max. 100 m lang, abgeschirmt

6.4. Typschildbeschreibung

Das Typschild enthält wichtige gerätespezifische Technische Daten. Nachfolgend ist der Aufbau des Typschild beispielhaft beschrieben.

6.4.1. Typschild der Regler für Wand-, Hutschienen-, Ventil- oder Fittingmontage

Bild 3: Beispiel: Typschild der Regler für Wand-, Hutschienen-, Ventil- oder Fittingmontage

Typschild der Schaltschrankvariante 6.4.2.

Bild 4: Beispiel: Typschild der Schaltschrankvariante

6.5. **Elektrische Daten**

Betriebsspannung:24 V DC ±10 %, gefiltert und geregeltLeistungsaufnahmeohne Last: ca. 2 W mit Last: maximal 48 W 100 % ED: 36 W		Eingang 2	Intern Hall-Sensor Frequenzbereich:	min. 0,25 Hz / max. 1 kHz	
				(nur in Verbindung mit Bürkert Durchflussfitting Typ S030)	
Regler Abtastrate:	gler Abtastrate: 300 Hz		Messbereich: Messstromstärke: Messfehler:	0 ℃ 200 ℃ 1 mA < 0,5 ℃	

6.5.1. Eingänge

Sollwert

Norm 4 - 20 mA		Eingansimpedanz: Auflösung:		70 Ω 5,5 μΑ	
Norm 0 - 10 V		Eingansimpedanz: Auflösung:		11,5 kΩ 2,5 mV	
Sensoren					
Norm 4 - 20 mA		Eingansimpedanz: Auflösung:		70 Ω 5,5 μΑ	
Frequenz					
Eingang 1	Extern-Sensor Frequenzbereich: Eingangswiderstand: Signalarten:		min. 0,25 Hz / max. 1 kHz > 1 k Ω Sinus, Rechteck, Dreieck (> 3000 mVss, max. 30 Vss)		
Eingang 2	Intern I Freque	Hall-Sensor nzbereich:	min. ((nur ir Bürke Typ S	0,25 Hz / max. 1 kHz n Verbindung mit ert Durchflussfitting 030)	
Pt 100					
(2-Leiter) Messb Messst Messfe		ereich: 0 °C . tromstärke: 1 mA ehler: < 0,5		200 °C	

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017 deutsch

58

Тур 8611

Montage

7. MONTAGE

7.1. Montagevarianten

Binäreeingang	Eingansimpedanz:	10 kΩ
	Ansprechschwelle:	3 30 V
	Max. Frequenz:	1 kHz

6.5.2. Ausgänge

Sensorversorgung: 2	4 V DC	
Binärausgang Tr N S	ransistorausgang (PN /lax. Strombelastung: Schaltspannung:	P) konfigurierbar 1,5 A 24 V DC
N S	Aax. Strombelastung: Schaltspannung:	(frequenzabhängig) 1,5 A 24 V DC
A A A A A A	Ansteuerung Ansteuerfrequenz: Aax. Auflösung:	1,2 kHz 20 Hz 16 Bit
Unstetiges Signal 2	Transistorausgänge f	ür PWM oder PTM
N M G	Jormsignal 0 - 10 V Jaximalstrom: Genauigkeit:	20 mA 0,5 %
Stetiges Signal N N G	Iormsignal 4 - 20 mA Iax. Schleifenwidersta Genauigkeit:	nd: 680 Ω 0,5 %

Tab. 1: Montagevarianten

7.1.1. Montagezubehör

Variante	Zubehör	Bestell-Nr.			
Einbau in Rohrleitung	Durchflussfitting, Typ S030	siehe Daten- blatt S030			
Hutschienenmontage	Adapter für Hutschienenmontage	655980			
Wandmontage	427098				
Die Adapter für die Wand- und Hutschienenmontage sind im Lieferumfang für die Montagevariante enthalten.					

7.2. Anbau an ein Proportionalventil

Bauen sie den Prozessregler Typ 8611 wie nachfolgend beschrieben an ein Proportionalventil an.

→ Die 4 Schrauben an der Frontseite des Prozessreglers lösen.

HINWEIS!

Bei unvorsichtigem Öffnen des Prozessreglers kann die interne Verkabelung beschädigt werden.

- Deckel vorsichtig nicht ruckartig vom Gehäuse abziehen.
- → Deckel vorsichtig vom Gehäuse abziehen.
- \rightarrow Beiliegende Flachdichtung über die Kontaktfahnen schieben.
- → Das Gehäuse des Prozessregler auf die Kontaktfahnen stecken und mit der Ventilschraube festziehen.
- → Den korrekten Sitz der Profildichtung am Gehäuse des Prozessreglers überprüfen.
- \rightarrow Deckel auf das Gehäuse des Prozessreglers aufsetzen und mit 4 Schrauben befestigen.

Falls erforderlich kann der Deckel auch um 90 ° nach links oder rechts verdreht montiert werden.

Tab. 2: Montagezubehör

MAN 1000141154 ML Version; GStatus; RL (released | freigegeben) printed; 22.09.2017 deutsch

60

Тур 8611

Montage

Bild 5: Anbau des Prozessreglers an ein Proportionalventil

7.3. Montage der Schaltschrankvariante

Bild 6: Geräteabmessungen und Schalttafelausschnitt

7.3.1. Einbau in einen Schaltschrank

- Schalttafelausschnitt mit den Maßen 45mm x 45mm (Eckenradius 3mm) vorbereiten.
- Die mitgelieferte Dichtung auf das Gehäuse aufsetzen.
- Den Regler von vorne in den Schalttafelausschnitt einsetzten.
- Von der Rückseite die 4 mitgelieferten Befestigungselemente einrasten und mit einem Schraubendreher festspannen.

Empfohlene Leitungsquerschnitte für die Schaltschrankvariante:

	Querschnitt min.	Querschnitt max.	Mindestlänge
Querschnitt flexible Leitungen	0,2 mm ²	1,5 mm²	10 mm (Abisolierung)
Querschnitt flexible Leitungen mit Ade- rendhülse ohne Kunststoffhülse	0,25 mm²	1,5 mm²	10 mm
Querschnitt flexible Leitungen mit Aderendhülse mit Kunststoffhülse	0,25 mm²	0,75 mm²	10 mm

Tab. 3: Empfohlene Leitungsquerschnitte

Elektrische Installation

8. ELEKTRISCHE INSTALLATION

8.1. Elektrische Installation für Montagevarianten Fittingmontage, Wandmontage, Ventilmontage oder Hutschienenmontage

8.1.1. Anschlussvarianten

Stecker	Steckeran- sicht	Belegung
Rundsteck- verbinder M12, 8-polig	6 5 4 7 • • • • • •	Versorgungsspannung, Sollwerteingang 4 - 20 mA / 0 - 10 V, Prozess-Istwert- oder Stellgrößen- ausgang 4 - 20 mA / 0 - 10 V, Binäreingang, Binärausgang
		Hinweis! Für das Anschlusskabel wird ein gerader Stecker (female) empfohlen, da die Ausrichtung des Steckers vari- ieren kann.
Rundsteck- verbinder M8, 3-polig		Anschluss Sensor (4 - 20 mA / 0 - 10 V, Pt 100 oder Frequenz) und Sensorversorgung 24 V DC

Stecker	Steckeran- sicht	Belegung
Rundsteck- verbinder M8, 4-polig		Anschluss Stellglied • Proportionalventil (1 x PWM) • Prozessventil (1 x PTM) • Stellgröße 4 - 20 mA / 0 - 10 V und Sensorversorgung 24 V DC (nur ID 182383))
DIN-EN 175301		Anschluss für Direktmontage auf Proportionalventil (1 x PWM) oder Auf/Zu-Ventil (1 x PTM)

Tab. 4:Anschlussvarianten f
ür Montage auf Durchflussfitting,
Wandmontage, Hutschienenmontage oder Ventilmontage

8.1.2. Anschlussbelegung

Rundsteckverbinder M12, 8-polig

Für das Anschlusskabel wird ein gerader Stecker (femail) empfohlen, die die Ausrichtung des Steckers variieren kann.

Steckerbild	Pin	Farbe	Belegung
s 5 4	1	weiß	24 V DC Spannungsversorgung
7	2 (DIN2)	braun	Binäreingang (B_IN)
	3	grün	GND – Versorgung, Binäreingang, Binärausgang
	4 (AOUT)	gelb	4 - 20 mA oder 0 - 10 V Analogausgang (Prozesswert oder Stellgröße Ventil)
	5 (AIN2)	grau	4 - 20 mA oder 0 - 10 V Analogeingang (Sollwert / Verhältnis)
	6	pink	GND – Analogausgang
	7	blau	GND – Analogeingang (Sollwert / Verhältnis)
	8 (BO1)	rot	(+) Binärausgang (B_O1)

Tab. 5:Belegung Rundsteckverbinder M12, 8-polig

Adernfarben bei Verwendung von Standardkabeln (z. B. von Fa. Lumberg, Escha)

8.1.3. Sensoranschluss

Rundsteckverbinder M8, 3-polig

Eingangs- signal	Pin	Farbe	Belegung	Äußere Beschaltung
4 - 20 mA, 2-Leiter	1	braun	+ 24 V Sensorver- sorgung	1 0 1 -> 24 V DC
Versorgung von Typ	3	blau	nicht verbunden	Transmitter
8611 (<i>AIN1</i>)	4	schwarz	Signal- eingang (Quelle)	4 ○ ◀ - 20 mA
4 - 20 mA / 0 - 10 V,	1	braun	+ 24 V Sensorver- sorgung	
Versorgung	3	blau	GND	3 O Transmitter
von Typ 8611 (<i>AIN1</i>)	4	schwarz	Signal- eingang (Quelle)	4 0 4 - 20 mA / 0 - 10 V

Тур 8611

Elektrische Installation

Eingangs- signal	Pin	Farbe	Belegung	Äußere Beschaltung
4 - 20 mA	1	braun	nicht verbunden	
4-Leiter	3	blau	GND	30GND Trans- mitter
extern (<i>AIN1</i>)	4	schwarz	Signal- eingang (Quelle)	4 ○ ▲ - 20 mA / Ver- 0 - 10 V sorgung
Frequenz 3-Leiter	1	braun	+ 24 V Sensorver- sorgung	1 0 ^{24 V DC}
Versorgung von Typ 8611 (<i>DIN1</i>)	3	blau	GND	3 O GND Transmitter
	4	schwarz	Frequenz- eingang (NPN)	4 ○◄ Takt (<i>DIN1</i>)
Frequenz	1	braun	nicht verbunden	GND
4-Leiter Versorgung extern (<i>DIN1</i>)	3	blau	GND	30GND Trans- mitter
	4	schwarz	Frequenz- eingang (NPN)	4 O Takt (<i>DIN1</i>) Ver- sorgung

Eingangs- signal	Pin	Farbe	Belegung	Äußere Beschaltung
	1	braun	nicht verbunden	
Pt 100 2-Leiter	3	blau	GND Pt 100	3 Pt 100
(AIN3)	4	schwarz	(+) Pt 100 (Strom- speisung)	40

Tab. 6:Sensoranschluss: Belegung Rundsteckverbinder M8,
3-polig

8.1.4. Anschluss Ventile

Rundsteckverbinder M8, 4-polig

Ausgangs- signal	Pin	Farbe	Belegung	Äußere Beschaltung
	1	braun	nicht verbunden	
PWM	2	weiß	nicht verbunden	Proportional- ventil
(MODE = SCV)	3	blau	(–) PWM (Ventil2)	30
	4 (BO4)	schwarz	(+) PWM (Ventil2)	40
3 Punkt (MODE = PCV)	1 (<i>BO3</i>)	braun	(+) Belüftung (Ventil 1)	1 O NC-Ventil
	2	weiß	(−) Belüftung (Ventil 1)	
	3	blau	(–) Entlüftung (Ventil 2)	3 O NO-Ventil
	4 (<i>BO4</i>)	schwarz	(–) Entlüftung (Ventil 2)	40

Ausgangs- signal	Pin	Farbe	Belegung	Äußere Beschaltung
	1 (BO3)	braun	+ 24 V DC Versorgung	1 Q Versorgung
1) 4 - 20 mA oder 0 - 10 V	2	weiß	GND (4 - 20 mA oder 0 - 10 V)	2 0 (M)
(<i>MODE</i> =	3	blau	GND Versorgung	30
4 – 207 0 – 10)	4 (AOUT)	schwarz	+ 4 - 20 mA oder 0 - 10 V Stellgröße	40
	1 (BO3)	braun	(+) Ventil 1	NC / NO Ventil
3 Punkt (<i>MODE</i> = 3P – T)	2	weiß	(–) Ventil 1	
	3	blau	(–) Ventil 2	NC / NO Ventil
	4 (BO4)	schwarz	(+) Ventil 2	40

Elektrische Installation

Rundsteckverbinder	M12, 8-pol	ig
--------------------	------------	----

Tab. 7:Belegung Rundsteckverbinder M8, 4-polig

Ausgangs- signal	Pin	Farbe	Belegung	Äußere Beschaltung
2) 4 - 20 mA oder 0 - 10 V	4 (AOUT)	gelb	4 - 20 mA oder 0 - 10 V Stellgröße	4 0 + 24 V DC 0 0
(MODE = 4 - 20 / 0 - 10)	6	pink	GND – Analog- ausgang	60 GND (24 V)

Tab. 8: Belegung Rundsteckverbinder M12, 8-polig

8.2. Elektrische Installation der Schaltschrankvariante

WARNUNG!

Verletzungsgefahr bei fehlerhafter Installation!

Unsachgemäße Installation kann den eCONTROL Typ 8611 beschädigen oder zerstören.

 Die elektrische Installation darf nur autorisiertes Fachpersonal durchführen!

Bild 9: Schaltschrankvariante; Anschlussplatine mit Federklemmen und Steckbrücken

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017 deutsch

8.2.1. Klemmenbelegung

Klemmenblock 1

68

Elektrische Installation

Klemme	Belegung	Äußere Beschaltung
5 (<i>BO3</i>)	(+) Belüf- tungsventil (<i>PCV</i>) oder Ventil 1 (2P – T oder 3P – T)	$MODE = 2P - T \qquad MODE = PCV$ oder $3P - T$ $5 \circ 5 \circ$
6	(-) Belüf- tungsventil (<i>PCV</i>) oder Ventil 1 (2P – T oder 3P – T)	6 ° NC / NO NC Ventil max. 1 A Ventil max. 1 A
7 (BO4)	(+) Propor- tionalventil (<i>SCV</i>), Entlüftungs- ventil (PCV) oder Ventil 2 (3P – T)	$MODE = 3P - T \qquad MODE = SCV$ $7 \circ \qquad 7 \circ \qquad$
8	(-) Propor- tionalventil (SCV), Entlüftungs- ventil (PCV) oder Ventil 2 (3P – T)	MODE = PCV 7 0 8 0 NO Ventil max. 1 A

Klemmenblock 2

Klemme	Belegung	Äußere Beschaltung
9	GND – Analogausgang	9 0 GND
10 (<i>AOUT</i>)	(+) Analogausgang (Prozesswert oder Stellgröße Ventil)	10 0 → 4 - 20 mA / 0 - 10 V
11	GND – Sensor, Stellglied	11 0 GND
12	24 V DC Sensor- versorgung oder Stellglied	12 0 24 V DC
13	nicht belegt	nicht belegt
14 (<i>AIN2</i>)	(+) Externe Vorgabe von Sollwert / Ver- hältnis 4 - 20 mA / 0 - 10 V	14 ← 0 4 - 20 mA / 0 - 10 V (Quelle) (21 0 A-GND)
15	(+) 5 V DC Sensor- versorgung (max. 20 mA)	15 0 → 5 V DC (1, 11 oder 23 0 → GND)
16	RS485_COM	16 O RS485_ COM
17	RS485_A (+)	17 O RS485_A
18	RS485_B (–)	18 O —— RS485_B

Tab. 9: Belegung Klemmenblock 1

Tab. 10: Belegung Klemmenblock 2

Klemmenblock 3

Klemme	Belegung	Äußere Beschaltung	
19	GND – Pt 100, RTD	19 o + Pt 100	
20 (<i>AIN3</i>)	(+) Pt 100, RTD (Strom- speisung)	20 o (0 200 °C)	
21	GND – Ana- logeingang	21 O —— A-GND	
22 (AIN1)	(+) Prozess- werteingang 4 - 20 mA / 0 - 10 V	22 ○ 4 - 20 mA / 0 - 10 V (Quelle) 21 ○ A-GND	
23	GND – Sensor, Stellglied	23 O GND	
24	24 V DC Sen- sorversorgung oder Stellglied	24 0 → 24 V DC - Out (max. 1 A) 23 0 GND	
25 Ver- sorgung	Frequenz- eingang 2 (NPN oder PNP)	Jumper 2 Versorgung von 8611 12 oder 0 24 V DC NPN 24	
8611 (<i>DIN3</i>)	Q ₂ bei Verhält- nisregelung (<i>MODE</i> = <i>RATI</i>)	PNP 25 O Trans- 11 oder O GND Trans- mitter Takt	

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017 deutsch

70

Typ 8611 Bedienung und Funktion

Klemme	Belegung	Äußere B	eschaltung
27 Ver- sorgung extern (<i>DIN1</i>)	Frequenz- eingang 1 (NPN oder PNP) Istwert Durch- fluss / Q ₁ bei Verhält- nisregelung (<i>MODE</i> = <i>RATI</i>)	Jumper 1 NPN	Versorgung extern Versorgung 11 oder O 23 27 O Takt GND

Tab. 11: Belegung Klemmenblock 3

9. BEDIENUNG UND FUNKTION

9.1. Bedien- und Anzeigeelemente

Das Bedien- und Anzeigeelement des eCONTROL Typ 8611 ist mit 3 Tasten und einer LCD-Matrix-Anzeige ausgestattet.

9.1.1. Anzeigelemente

Bild 10: Anzeigeelemente

9.1.2. Bedienelemente

Pfeiltasten

links

rechts

- Wechsel der Anzeige in der Prozessbedienebene bei Betriebszustand AUTOMATIK
- Wechsel der Menüpunkte bei Betriebsart HAND und in der Konfigurationsebene
- Eingabe von Zahlenwerten

ENTER-Taste

- Wechsel zwischen den Betriebszuständen AUTOMATIK und HAND
- Wechsel zwischen Bedien- und Konfigurationsebene
- Auswahl Menüpunkt
- Einstellungen übernehmen

Die ausführliche Beschreibung der Funktion finden Sie im Kapitel "9.3. Funktion der Tasten".

9.2. Bedienebenen und Betriebszustände

Für die Bedienung und Einstellung des eCONTROL Typ 8611 gibt es 2 Ebenen, sowie 2 Betriebszustände AUTOMATIK und HAND.

Ebene 1: Prozessbedienebene

In Ebene 1 kann zwischen den 2 Betriebszustände AUTOMATIK und HAND gewechselt werden.

Betriebszustand: AUTOMATIK: Der normale Regelbetrieb wird ausgeführt und überwacht.

> HAND: Schnellzugriff auf wichtige Funktionen und Testfunktionen. Der Betriebszustand HAND wird auf dem Display durch ein Handsymbol angezeigt.

Ebene 2: Konfigurationsebene

In der Ebene 2 können die Grundeinstellungen des Reglers geändert werden.

Nach dem Einschalten der Betriebsspannung befindet sich der Regler in der Prozessbedienebene und im Betriebszustand AUTOMATIK.

Beim Anlegen der Betriebsspannung leuchtet für ca. 2 Sekunden in der Anzeige die Softwareversion auf.

Wird während dieser 2 Sekunden die ENTER-Taste betätigt, wird die Unterversionierung angezeigt. Danach befindet sich der Regler wieder in der Prozessbedienebene.
Bedienung und Funktion

9.2.1. Wechsel zwischen den Bedienebenen und Betriebszuständen

Durch betätigen der ENTER-Taste können Bedienebene und Betriebszustand gewechselt werden (siehe <u>Bild 11</u>).

Veränderungen innerhalb der Konfigurationsebene werden erst nach dem Rücksprung in die Prozessbedienebene abgespeichert.

Veränderungen im Betriebszustand Hand können bei laufendem Reglerbetrieb vorgenommen werden.

Bild 11: Wechsel von Bedienebene und Betriebszustand

MAN_1000141154 ML_Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

9.3. Funktion der Tasten

Zur Bedienung des Gerätes gibt es zwei Pfeiltasten und eine ENTER-Taste.

Ihre Funktion in Bezug auf die Bedienebene und den Betriebszustand ist in der nachfolgenden Tabelle dargestellt.

Bedien- ebene	Betrieb- zustand	09		
Ebene 1: Prozess- bedie- nebene	AUTO- MATIK	Anzeige wec schen Istwer und Stellgröl	hseln zwi- t, Sollwert 3e	 Taste kurz drücken (< 1 s): Wechsel in den Betriebszustand HAND Taste lang drücken (> 5 s): Wechsel in die Konfigurations- ebene
	HAND	Wechsel in den letzten Menüpunkt Eingabe von Wert erhöhen	Wechsel in den nächsten Menüpunkt Werten Wechsel um eine Stelle nach links	 Auswahl Menüpunkt Einstellungen übernehmen Wechsel in den Betriebszustand AUTOMATIK (bei Anzeige BACK)

Bedien- ebene	Betrieb- zustand	09		
Ebono Qu		Wechsel in den letzten Menüpunkt	Wechsel in den nächsten Menüpunkt	 Auswahl Menüpunkt Einstellungen übernehmen
Ebene 2: Konfigu- rations- ebene		Eingabe von Wert erhöhen	Werten Wechsel um eine Stelle nach links	 Wechsel in die Prozess- bedienebene und in den Betriebszustand AUTOMATIK (bei Anzeige END)

Tab. 12: Funktion der Tasten

10. **FUNKTIONEN DER** PROZESSBEDIENEBENE

Betriebszustand AUTOMATIK 10.1.

Nach dem Einschalten der Betriebsspannung befindet sich der Regler in der Prozessbedienebene und im Betriebszustand AUTOMATIK. Der normale Regelbetrieb wird ausgeführt und überwacht.

10.1.1. Anzeigen im Betriebszustand **AUTOMATIK**

Durch Drücken der Pfeiltasten kann zur Überwachung des Regelbetriebs zwischen 4 unterschiedlichen Anzeigen gewechselt werden. Welche dieser Anzeigen als Startanzeige nach Anlegen der Betriebsspannung erscheinen soll, kann im Menü DSPL definiert werden (siehe Bedienstruktur der Konfigurationsebene Bild 26).

Тур 8611

Funktionen der Prozessbedienebene

Bild 12: Anzeigen im Betriebszustand AUTOMATIK

10.2. Betriebszustand HAND

In den Betriebszustand HAND gelangt man durch kurzes Betätigen (< 1 s) der ENTER-Taste.

Der Betriebszustand wird auf dem Display mit einem Handsymbol angezeigt.

10.3. Spezifische Menüpunkte der Prozess- und Verhältnisregelung

Für die Prozess- und Verhältnisregelung ist die Anzeige einiger Menüpunkte unterschiedlich. In den jeweiligen Menübeschreibungen wir darauf detailliert eingegangen.

Die Regelungsart wird durch die Auswahl der Regelgröße im Menü MODE vorgegeben:

Prozessregelung:

liegt vor bei Auswahl aller Regelgrößen im Menü MODE außer RATI.

Verhältnisregelung

liegt vor wenn die Regelgröße RATI im Menü MODE ausgewählt wurde.

Menüpunkte im Betriebszustand 10.4. HAND

SET	Sollwertvorgabe für Prozessregelung
	 Menüpunkt wird bei Prozessregelung angezeigt.
	 Ist nicht verfügbar bei Auswahl externe Sollwertvorgabe.
RFAC	 Vorgabe Verhältnisfaktor für Verhältnisregelung Menüpunkt wird nur bei Verhältnisregelung angezeigt (MODE = RATI).
	 Ist nicht verfügbar bei Auswahl externe Sollwertvorgabe.
BACK	Bei der Anzeige <i>BACK</i> auf dem Display, kann durch kurzes Betätigen der ENTER-Taste in den Betriebszustand AUTOMATIK gewechselt werden. Bei Drücken einer Pfeiltaste erscheint der nächste bzw. vorherige Menüpunkt.
TEST	Anzeige der analogen Eingänge und Ausgänge sowie der digitalen Eingänge.
PARA	Einstellung der Reglerparameter (Eingabe Code erforderlich, wenn Codeschutz aktiviert).
VALV	Manuelles Öffnen und Schließen der ange- schlossenen Ventile.

Tab. 13: Menüpunkte der Prozessbedienebene

Funktionen der Prozessbedienebene

10.5. Bedienstruktur der Prozessbedienebene im Betriebszustand HAND

Bild 13: Bedienstruktur der Prozessbedienebene im Betriebszustand HAND – 1 von 2

Bild 14: Bedienstruktur der Prozessbedienebene im Betriebszustand HAND – 2 von 2

Konfigurationsebene

11. KONFIGURATIONSEBENE

11.1. Bedienstruktur der Konfigurationsebene

Bild 15: Bedienstruktur der Konfigurationsebene - 1 von 12

Bild 16: Bedienstruktur der Konfigurationsebene - 2 von 12

Тур 8611

Konfigurationsebene

Bild 17: Bedienstruktur der Konfigurationsebene - 3 von 12

Bild 18: Bedienstruktur der Konfigurationsebene - 4 von 12

Тур 8611

Konfigurationsebene

Bild 19: Bedienstruktur der Konfigurationsebene - 5 von 12

Bild 20: Bedienstruktur der Konfigurationsebene - 6 von 12

Тур 8611

Konfigurationsebene

Bild 21: Bedienstruktur der Konfigurationsebene - 7 von 12

Bild 22: Bedienstruktur der Konfigurationsebene - 8 von 12

Тур 8611

Konfigurationsebene

Bild 23: Bedienstruktur der Konfigurationsebene - 9 von 12

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

deutsch

Тур 8611

Konfigurationsebene

Bild 25: Bedienstruktur der Konfigurationsebene - 11 von 12

12. ÜBERSICHT EINSTELLPARAMETER

		Stetige Rege	lung		Stetigähnlich	e Regelung		Unstetige Reg	gelung
	Stellglied	Proportional- ventil	Linearer St	ellantrieb	Prozessventil	Auf/Zu Ventil	Auf/Zu Ventil Drehantrieb	Auf/Zu Ventil	Auf/Zu Ventil
ter	Programm MODE	SCV	0-10	4-20	PCV	2P – T	3P – T	2P – T	3P – T
ame DE)	Ansteuerfrequenz	PWM	[-]	[-]	[-]	[-]	[-]	[-]	[-]
par; 10D	Wirkungsweise	[-]	[-]	[-]	[-]	NC/NO	NC/NO	NC/NO	NC/NO
Ventil (A	Mindestansteuerzeit	[-]	[-]	[-]	<i>TMN1/TMN2</i> [ms]	<i>TMN1</i> [ms]	<i>TMN1/TMN2</i> [ms]	<i>TMN1</i> [ms]	<i>TMN1/TMN2</i> [ms]
			~				~		
	Reglerstruktur	PI oder	P (TN = 99	99)	Р	PI oder P (TN = 9999)	P (KP1	= 9999)
	Verstärkung	<i>KP1</i> [%/PV]	<i>KP1</i> [%/PV]		<i>KP1</i> [%/PV]	<i>KP1</i> [%/PV]	<i>KP1</i> [%/PV]	<i>KP1</i> [(=9999)	<i>KP1 / KP2</i> (=9999)
RA)	Nachstellzeit	<i>TN</i> [s]	TN [s]	<i>TN</i> [s]	[-]	TN [s]	<i>TN</i> [s]	[-]	[-]
(PA	Zykluszeit	[-]	[-]	[-]	TREG [s]	TREG [s]	TREG [s]	[-]	[-]
meter	Totband	<i>DEAD</i> [Δ PV]	DEAD [∆ PV]	DEAD [∆ PV]	DEAD [Δ PV]	DEAD [Δ PV]	DEAD [Δ PV]	DEAD [Δ PV]	DEAD [Δ PV]
rpara	Regelsinn	INV (Yes/No)	INV (Yes/No)	INV (Yes/No)	INV (Yes/No)	INV (Yes/No)	INV (Yes/No)	INV (Yes/No)	INV (Yes/No)
Regle	Nullpunktab- schaltung	ZERO (Yes/No)	ZERO (Yes/No)	ZERO (Yes/No)	ZERO (Yes/No)	ZERO (Yes/No)	ZERO (Yes/No)	ZERO (Yes/No)	ZERO (Yes/No)
	Regelbeginn	<i>STRT</i> [0-100]	<i>STRT</i> [0-10]	<i>STRT</i> [4-20]	[-]	<i>STRT</i> [0-100]	<i>STRT</i> [0-100]	[-]	[-]

Tab. 14: Übersicht Einstellparameter

Zusätzliche Reglerparameter für kaskadierte Regelung (MODE = T + F)

		Stetige Rege	lung		Stetigähnlich	e Regelung		Unstetige Reg	gelung
	Regler- struktur	Р (1	PI oder [N = 9999)		Р	PI (P (TN =	oder = 9999)	F (KP1 =	⊃ : 9999)
neter	Verstärkung	<i>KP_T</i> [%/°K]							
erparar (PARA)	Nachstellzeit	<i>TN_T</i> [s]	<i>TN_T</i> [s]	TN_T [s]	<i>TN_T</i> [s]	<i>TN_T</i> [s]	<i>TN_T</i> [s]	<i>TN_T</i> [s]	TN_T [s]
Regl	Totband	<i>DEAD</i> [∆ °K]	<i>DEAD</i> [Δ °K]	<i>DEAD</i> [∆ ⁰K]	<i>DEAD</i> [∆ °K]	<i>DEAD</i> [∆ °K]	<i>DEAD</i> [Δ °K]	DEAD [∆ °K]	<i>DEAD</i> [Δ °K]

Tab. 15: Übersicht Einstellparameter für kaskadierte Regelung

Тур 8611

Verpackung, Transport

13. VERPACKUNG, TRANSPORT

HINWEIS!

Transportschäden!

Unzureichend geschützte Geräte können durch den Transport beschädigt werden.

- Gerät vor Nässe und Schmutz geschützt in einer stoßfesten Verpackung transportieren.
- Eine Über- bzw. Unterschreitung der zulässigen Lagertemperatur vermeiden.

14. LAGERUNG

HINWEIS!

Falsche Lagerung kann Schäden am Gerät verursachen.

- Gerät trocken und staubfrei lagern!
- Lagertemperatur: 0 ... +70 °C.

15. ENTSORGUNG

→ Entsorgen Sie das Gerät und die Verpackung umweltgerecht.

HINWEIS!

Umweltschäden durch von Medien kontaminierte Geräteteile.

• Geltende Entsorgungsvorschriften und Umweltbestimmungen einhalten.

Hinweis:

Beachten Sie die nationalen Abfallbeseitigungsvorschriften.

Typ 8611 Entsorgung

eCONTROL 8611 : Régulateur de process et commande proportionnelle

5

(

Sommaire

1.	À PROPOS DU QUICKSTART	97
	1.1. Symboles	97
2.	UTILISATION CONFORME	98
	2.1. Restrictions	98
	2.2. Mauvaise utilisation prévisible	98
3.	CONSIGNES DE SÉCURITÉ DE BASE	99
4.	INDICATIONS GÉNÉRALES	100
	4.1. Les adresses	100
5.	DESCRIPTION DU SYSTÈME	100
	5.1. Description générale	100
	5.2. Interfaces du régulateur de process type 8611	100
	5.3. Fonctions	101
	5.4. Les différentes variantes de montage et d'intégration	101
	5.5. Logiciel	102
6.	CARACTÉRISTIQUES TECHNIQUES	102
	6.1. Conditions d'exploitation	102

	6.2. Conformité avec les normes suivantes 102	
	6.3. Caractéristiques techniques générales 102	
	6.4. Description plaque signalétique 103	
	6.5. Caractéristiques électriques 104	
7.	MONTAGE 105	
	7.1. Variantes de montage 105	
	7.2. Montage sur une vanne proportionnelle 106	
	7.3. Montage de la variante armoire électrique 107	
3.	INSTALLATION ÉLECTRIQUE	
	8.1. Installation électrique pour variantes de montage sur raccord, montage mural, montage sur vanne ou sur rail chapeau	
	8.2. Installation électrique de la variante armoire élec- trique	
Э.	COMMANDE ET FONCTIONNEMENT117	
	9.1. Eléments de commande et indicateur de position 117	
	9.2. Niveaux de commande et états de marche 118	
	9.3. Fonction des touches 119	

10. NIVEAU DE COMMANDE PROCESS 120
10.1. Etat de marche AUTOMATIQUE
10.2. Etat de marche MANUEL 122
10.3. Options de menu spécifiques de la régulation de process et de la régulation proportionnelle
10.4. Options de menu en état de marche MANUEL 122
10.5. Structure du niveau de commande process en état de marche MANUEL123
11. NIVEAU DE CONFIGURATION 125
11. NIVEAU DE CONFIGURATION 125 11.1. Structure de commande du niveau de configuration 125
 NIVEAU DE CONFIGURATION
 NIVEAU DE CONFIGURATION
11. NIVEAU DE CONFIGURATION

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

96

1. À PROPOS DU QUICKSTART

Le Quickstart décrit le cycle de vie complet de l'appareil. Conservez-le de sorte qu'il soit accessible à tout utilisateur et à disposition de tout nouveau propriétaire.

Informations importantes pour la sécurité !

Lisez attentivement ce Quickstart. Tenez compte en particulier des chapitres « Consignes de sécurité fondamentales » et « Utilisation conforme ».

• Le Quickstart doit être lu et compris.

Le Quickstart explique par des exemples le montage et la mise en service de l'appareil.

Vous trouverez la description détaillée de l'appareil dans le manuel d'utilisation du eCONTROL type 8611.

Le manuel d'utilisation se trouve sur le CD fourni ou sur Internet sous :

www.buerkert.fr

1.1. Symboles

Les moyens de représentation suivants sont utilisés dans les présentes instructions de service.

DANGER !

Met en garde contre un danger imminent !

Le non-respect peut entraîner la mort ou de graves blessures.

AVERTISSEMENT !

Met en garde contre une situation éventuellement dangereuse !

Risque de blessures graves, voire la mort en cas de non-respect.

ATTENTION !

Met en garde contre une situation éventuellement dangereuse !

Risque de blessures graves, voire la mort en cas de non-respect.

REMARQUE !

Met en garde contre des dommages matériels !

Conseils et recommandations importants.

renvoie à des informations dans ces instructions de service ou dans d'autres documentations.

 \rightarrow identifie une opération que vous devez effectuer.

2 UTILISATION CONFORME

L'utilisation non conforme du régulateur de process type 8611 peut présenter des dangers pour les personnes, les installations proches et l'environnement.

- Associé à une vanne proportionnelle ou à une vanne process et à un capteur, le régulateur de process sert à réguler la grandeur de process pour la pression, la température ou le débit.
- N'utilisez pas l'appareil à l'extérieur.
- Lors de l'utilisation, il convient de respecter les données et conditions d'utilisation et d'exploitation admissibles spécifiées dans les instructions de service et dans les documents contractuels. Celles-ci sont décrites au chapitre « Caractéristiques techniques ».
- L'appareil peut être utilisé uniquement en association avec les appareils et composants étrangers recommandés et homoloqués par Bürkert.
- · Les conditions pour l'utilisation sûre et parfaite sont un transport, un stockage et une installation dans les règles ainsi qu'une parfaite utilisation et maintenance.
- Veillez à ce que l'utilisation de l'appareil soit toujours conforme.

2.1. Restrictions

Lors de l'exportation du système/de l'appareil, respecter les restrictions éventuelles existantes.

2.2. Mauvaise utilisation prévisible

- Le type 8611 ne doit pas être utilisé dans des zones présentant des risques d'explosion.
- Ne soumettez pas le corps à des contraintes mécaniques (par ex. pour déposer des obiets ou en l'utilisant comme marche).

3. CONSIGNES DE SÉCURITÉ DE BASE

Ces consignes de sécurité ne tiennent pas compte

- des hasards et des événements pouvant survenir lors du montage, de l'exploitation et de l'entretien des appareils.
- des prescriptions de sécurité locales que l'exploitant est tenu de faire respecter par le personnel chargé du montage.

Situations dangereuses d'ordre général.

Pour prévenir les blessures, respectez ce qui suit :

- Les travaux d'installation doivent être effectués uniquement par des techniciens qualifiés et habilités disposant de l'outillage approprié !
- Après une interruption de l'alimentation électrique ou pneumatique, un redémarrage défini ou contrôlé du processus doit être garanti.
- L'appareil doit être utilisé uniquement en parfait état et en respectant les instructions de service.
- Les règles générales de la technique sont d'application pour planifier l'utilisation et utiliser l'appareil.

REMARQUE !

Eléments /sous-groupes sujets aux risques électrostatiques !

L'appareil contient des éléments électroniques sensibles aux décharges électrostatiques (ESD). Ces éléments sont affectés par le contact avec des personnes ou des objets ayant une charge électrostatique. Au pire, ils sont immédiatement détruits ou tombent en panne après mise en service.

- Respectez les exigences selon EN 61340-5-1 et 5-2 pour minimiser ou éviter la possibilité d'un dommage causé par une soudaine décharge électrostatique !
- Veillez également à ne pas toucher d'éléments électroniques lorsqu'ils sont sous tension !

Le régulateur de process type 8611 a été développé dans le respect des règles reconnues en matière de sécurité et correspond à l'état actuel de la technique. Néanmoins, des risques peuvent se présenter.

Le non-respect de ces instructions de service avec ses consignes ainsi que les interventions non autorisées sur l'appareil excluent toute responsabilité de notre part et entraînent la nullité de la garantie légale concernant les appareils et les accessoires !

4. INDICATIONS GÉNÉRALES

4.1. Les adresses

Allemagne

Adresse :

Bürkert Fluid Control Systems Sales Center Christian-Bürkert-Str. 13-17 D-74653 Ingelfingen Tél. : + 49 (0) 7940 - 10 91 111 Fax : + 49 (0) 7940 - 10 91 448 E-mail : info@de.buerkert.com

International

Les adresses se trouvent aux dernières pages de ces instructions de service imprimées.

Egalement sur internet sous :

www.burkert.com

5. DESCRIPTION DU SYSTÈME

5.1. Description générale

Le régulateur de process type 8611 est prévu pour être raccordé dans un circuit de régulation fermé. Il peut être utilisé pour de nombreuses tâches de régulation en technique des fluides. La figure suivante représente l'intégration du régulateur dans un circuit de régulation fermé.

Fig. 1 : Diagramme synoptique d'un circuit de régulation fermé

5.2. Interfaces du régulateur de process type 8611

En fonction de la boucle de régulation et du process, différentes structures de régulation et différentes entrées et sorties sont disponibles pour mesurer la valeur effective du process et activer les

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

100

français

Description du système

éléments de réglage. La vue d'ensemble suivante représente les interfaces disponibles du régulateur de process.

Fig. 2 : Interfaces du régulateur de process type 8611

5.3. Fonctions

Le régulateur de process type 8611 eCONTROL permet d'effectuer les tâches de régulation suivantes :

- Régulation à valeur constante (circuit de régulation monoboucle)
- Régulation à valeur variable (valeur de consigne externe)
- Régulation proportionnelle
- Régulation en cascade

Il est possible d'appliquer au choix des signaux normalisés (courant / tension) et des signaux à fréquence analogique aux entrées modulables du régulateur ou encore de raccorder des thermomètres à résistance (Pt 100).

Les sorties pour les signaux normalisés continus (courant / tension) ou les sorties de transistor peuvent être utilisées comme sorties de régulateur. Les sorties de transistor permettent d'actionner des vannes ou d'autres éléments de réglage à commutation. Par ailleurs, une entrée binaire et un maximum de 2 sorties binaires sont disponibles pour les fonctions supplémentaires.

5.4. Les différentes variantes de montage et d'intégration

Le régulateur de process type 8611 existe dans les variantes suivantes (voir également le chapitre <u>«7.1. Variantes de montage»</u>) :

- · Pour intégration dans un système de tuyauterie
- Pour montage sur une vanne proportionnelle
- · Pour montage mural ou montage sur un rail chapeau
- Pour intégration dans une armoire électrique

Particularités de la variante armoire électrique :

Contrairement aux autres variantes de montage, pour la variante d'armoire électrique de type 8611, deux entrées binaires sont disponibles au lieu d'une.

5.5. Logiciel

Le logiciel complet de eCONTROL type 8611 est expliqué dans la description suivante des options de menu et de ses structures de commande. L'ensemble de ce logiciel est disponible uniquement avec la variante armoire électrique de eCONTROL type 8611.

La structure du menu peut être différente selon la variante d'appareil (montage mural, sur vanne, rail chapeau ou raccord). Seules les options de menu correspondant logiquement au domaine d'utilisation sont proposées en fonction de la variante de l'appareil. Cette présélection se fait à la livraison du régulateur sur la base du numéro d'identification de commande sélectionné.

6. CARACTÉRISTIQUES TECHNIQUES

6.1. Conditions d'exploitation

Température ambiante admissible : (utilisation et stockage)	0 +70 °C
Humidité de l'air max. admissible :	\leq 80 %, sans condensation
Type de protection :	IP65 selon EN 60529

6.2. Conformité avec les normes suivantes

Label CE conforme en ce qui	
concerne la directive CEM :	EN61326

6.3. Caractéristiques techniques générales

Matériaux

Boîtier, couvercle :	PC, + 20 % fibres de verre
Film de plaque frontale :	Polyester
Vis :	Acier inoxydable
Multibroche :	CuZn, nickelé
Support de montage mural :	PVC

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

102

français

Caractéristiques techniques

Montage

Position de montage :

Indifférente

Variantes de montage : Montage sur une tuyauterie avec le raccord de débit Bürkert type S030 montage mural, montage sur rail chapeau, sur vanne et dans une armoire électrique

Affichage :

Tension de service :

Câble d'alimentation électrique :

2 lianes (voir «Fig. 10 : Indicateurs de position»)

Multibroche : 3 broches et/ou 4 broches M8, 8 broches M12

section maxi de 0,5 mm², longueur maxi 100 m, blindé

6.4. Description plaque signalétique

La plaque signalétique contient des caractéristiques techniques importantes spécifiques à l'appareil. La structure de la plague signalétique est décrite ci-après à titre d'exemple.

Plaque signalétique des régulateurs 6.4.1. pour montage mural, sur rail chapeau, vanne ou raccord

Exemple : Plaque signalétique des régulateurs pour Fig. 3 : montage mural, sur rail chapeau, vanne ou raccord

français

6.4.2. Plaque signalétique de la variante armoire électrique

Fig. 4 : Exemple : Plaque signalétique de la variante armoire électrique

6.5. Caractéristiques électriques

Tension de service :	24 V DC +/- 10 %, filtrée et régulée	Pt 100 (2 conducteurs)	Plag
Puissance absorbée	sans charge : env. 2 W avec charge : 48 W maxi ED 100 % : 36 W		Inten de m Errei
Taux de balayage du régulateur :	300 Hz		

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

104

6.5.1. Entrées

Valeur de consigne

Impédance d'entrée : Résolution :	70 Ω 5,5 μΑ		
Impédance d'entrée : Résolution :	11,5 kΩ 2,5 mV		
Impédance d'entrée : Résolution :	70 Ω 5,5 μA		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	z mini / 1 kHz maxi ectangle, triangle 0 mVss, 30 Vss maxi)		
Capteur Hall interne Plage de fréquences : 0,25 Hz mini / 1 kHz maxi (uniquement avec raccord de débit Bürkert type S030)			
teurs) Plage de mesu	re: 0 °C 200 °C		
Intensité du cou de mesure :	irant 1 mA		
Erreur de mesur	re : < 0,5 °C		
	Impédance d'entrée : Résolution : Impédance d'entrée : Résolution : Impédance d'entrée : Résolution : Impédance d'entrée : Résolution : Impédance d'entrée : de fréquences : 0,25 Hz ance d'entrée : > 1 kΩ de signal : Sinus, r (> 3000 ur Hall interne de fréquences : 0,25 Hz (unique débit Bi teurs) Plage de mesu Intensité du cou de mesure : Erreur de mesure		

Type 8611

Signal normalisé 4 - 20 mA

Résistance de boucle maxi -

Signal normalisé 4 - 20 mA

2 sorties transistor pour le pilotage PWM ou PTM Fréquence de pilotage :

Intensité de courant maxi :

Tension de commutation :

Intensité de courant maxi :

Tension de commutation :

Précision :

Précision :

Courant maximal:

Résolution maxi :

Entrée binaire

Signal continu

Signal discontinu

Sortie binaire

Alimentation du capteur :

Intensité totale pour toutes les sorties :

6.5.2. Sorties

Montage

Impédance d'entrée : $10 \text{ k}\Omega$

Seuil de réponse : Fréquence maxi : 3...30 V

1 kHz

680 O

0.5 %

20 mA

0.5 %

1,2 kHz ... 20 Hz

16 bits (en fonction de la fréquence)

1,5 A

1,5 A

1.5 A

24 V DC

24 V DC

24 V DC

7. MONTAGE

7.1. Variantes de montage

Sortie de transistor (PNP) configurable

Tab. 1 : Variantes de montage

7.1.1. Accessoires de montage

Variante	Accessoires	N° de commande		
Intégration dans une tuyauterie	Raccord, type S030	voir fiche tech- nique S030		
Montage sur rail chapeau	Adaptateur pour montage sur rail chapeau	655980		
Montage mural	Adaptateur pour montage mural	427098		
Les adaptateurs pour le montage mural et le montage sur rail chapeau font partie du matériel livré pour la variante de montage.				

Tab. 2 : Accessoires de montage

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

7.2. Montage sur une vanne proportionnelle

Montez le régulateur de process type 8611 comme cela est décrit ci-après sur une vanne proportionnelle.

 \rightarrow Desserrer les 4 vis sur le devant du régulateur de process.

REMARQUE !

L'ouverture sans précaution du régulateur de process peut endommager le câblage interne.

- Retirer le couvercle du boîtier avec précaution et sans brusquer.
- → Retirer le couvercle du boîtier avec précaution.
- \rightarrow Glisser le joint plat fourni sur les languettes de contact.
- → Placer le boîtier du régulateur de process sur les languettes de contact et le fixer avec la vis de la vanne.
- → Vérifier le positionnement correct du joint profilé sur le boîtier du régulateur de process.
- → Placer le couvercle sur le boîtier du régulateur de process et le fixer avec 4 vis.

Si nécessaire, le couvercle peut être monté également en le tournant de 90° vers la gauche ou la droite.

106

Туре 8611

Montage

Fig. 5 : Montage du régulateur de process sur une vanne proportionnelle

7.3. Montage de la variante armoire électrique

Fig. 6 : Dimensions de l'appareil et découpe du tableau de commande

français

7.3.1. Intégration dans une armoire électrique

- Préparer la découpe du tableau de commande aux dimensions 45 mm x 45 mm (rayon des arrondis 3 mm).
- Placer le joint fourni sur le boîtier.
- Installer le régulateur par le devant dans la découpe du tableau de commande.
- Encliqueter les 4 éléments de fixation fournis par l'arrière et les serrer à l'aide d'un tournevis.

Fig. 7 : Eléments de montage Fig. 8 : Régulateur monté

Sections de câble recommandées pour la variante armoire électrique :

	Section mini	Section maxi	Longueur mini
Section des câbles flexibles	0,2 mm ²	1,5 mm²	10 mm (dénudé sur)
Section des câbles flexibles avec embouts sans collet en plastique	0,25 mm²	1,5 mm²	10 mm
Section des câbles flexibles avec embouts à collet en plastique	0,25 mm²	0,75 mm²	10 mm

Tab. 3 : Sections recommandées

8. INSTALLATION ÉLECTRIQUE

8.1. Installation électrique pour variantes de montage sur raccord, montage mural, montage sur vanne ou sur rail chapeau

8.1.1. Variantes de raccordement

Connecteur	Vue du connecteur	Affectation
Connecteur rond M12, 8 pôles		Tension d'alimentation, entrée valeur de consigne 4 - 20 mA / 0 - 10 V, valeur effective de process ou sortie de grandeur de réglage 4 - 20 mA / 0 - 10 V, entrée binaire, sortie binaire Remarque ! Comme câble de raccordement, nous recommandons un connecteur droit (femelle) permettant de modifier l'alignement du connecteur.

Connecteur	Vue du connecteur	Affectation
Connecteur rond M8, 3 pôles		Raccordement capteur (4 - 20 mA / 0 - 10 V, Pt 100 ou fré- quence) et alimentation du capteur 24 V DC
Connecteur		Raccordement élément de réglage
rond M8, 4 pôles		 Vanne proportionnelle (1 x PWM) Vanne de process (1 x PTM) Grandeur de réglage 4 - 20 mA / 0 - 10 V et alimentation du capteur 24 V DC (uniquement ID 182383)
DIN-EN 175301		Raccordement pour montage direct sur vanne proportionnelle (1 xPWM) ou vanne ouvert/fermé (1 x PTM)

Tab. 4 : Variantes de raccordement pour montage sur raccord,
montage mural, sur rail chapeau ou sur vanne

8.1.2. Affectation du raccordement

Connecteur rond M12, 8 pôles

Comme câble de raccordement, nous recommandons un connecteur droit (femelle) permettant de modifier l'alignement du connecteur.

Connecteur	Broche	Couleur	Affectation
5 4	1	blanc	Alimentation en tension 24 V DC
7	2 (DIN2)	brun	Entrée binaire (<i>B_IN</i>)
	3	vert	GND – Alimentation, entrée binaire, sortie binaire
	4 (AOUT)	jaune	Sortie analogique 4 - 20 mA ou 0 - 10 V (valeur de process ou grandeur de réglage vanne)
	5 (<i>AIN2</i>)	gris	Entrée analogique 4 - 20 mA ou 0 - 10 V (valeur de consigne / proportion)
	6	rose	GND – Sortie analogique
	7	bleu	GND – Entrée analogique (valeur de consigne / proportion)
	8 <i>(</i> BO1)	rouge	(+) sortie binaire (B_O1)

Tab. 5 : Affectation connecteur rond M12, 8 pôles

Couleurs de fil en cas d'utilisation de câbles standard (par ex. de la Sté. Lumberg, Escha)

8.1.3. Raccordement de capteur

Connecteur rond M8, 3 pôles

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

Type 8611

Installation électrique

Signal d'entrée	Broche	Couleur	Affectation	Câblage externe
	1	brun	Non relié	
Pt 100 2 conduc- teurs (<i>AIN3</i>)	3	bleu	GND Pt 100	3 Pt 100
	4	noir	(+) Pt 100 (alimen- tation en courant)	40

Tab. 6 : Raccordement de capteur : affectation connecteur rondM8, 3 pôles

8.1.4. Raccordement des vannes

Connecteur rond M8, 4 pôles

Signal d'entrée	Broche	Couleur	Affectation	Câblage externe
	1	brun	Non relié	Vanne
PWM	2	blanc	Non relié	proportion-
(MODE = SCV)	3	bleu	(–) PWM (vanne 2)	
307)	4 (BO4)	noir	(+) PWM (vanne 2)	40
3 points (MODE = PCV)	1 (BO3)	brun	(+) alimen- tation en air (vanne 1)	Vanne NC
	2	blanc	(–) alimen- tation en air (vanne 1)	20
	3	bleu	(–) échappement (vanne 2)	Vanne NO
	4 (BO4)	noir	(+) échappement (vanne 2)	40

Signal d'entrée	Broche	Couleur	Affectation	Câblage externe
	1 (<i>B</i> O3)	brun	Alimentation + 24 V DC	Alimentation 10 de 8611
1) 4 - 20 mA ou	2	blanc	GND (4 - 20 mA ou 0 - 10 V)	20
0 - 10 V (<i>MODE</i> =	3	bleu	GND alimentation	30 M
4 – 20 / 0 – 10)	4 (AOUT)	noir	grandeur de réglage + 4 - 20 mA ou 0 - 10 V	40
3 points (<i>MODE</i> = 3 <i>P</i> – <i>T</i>)	1 (<i>BO3</i>)	brun	(+) vanne 1	Vanne NC / NO
	2	blanc	(–) vanne 1	
	3	bleu	(–) vanne 2	Vanne NC / NO
	4 (BO4)	noir	(+) vanne 2	40

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

Installation électrique

Connecteur rond M12, 8 pôles

Tab. 7 : Affectation connecteur rond M8, 4 pôles

Signal d'entrée	Broche	Couleur	Affectation	Câblage externe
2) 4 - 20 mA ou 0 - 10 V	4 (AOUT)	jaune	grandeur de réglage 4 - 20 mA ou 0 - 10 V	4 0 + 24 V DC 0 0
(MODE = 4 - 20 / 0 - 10)	6	rose	GND – Sortie analogique	60 GND (24 V)
 Disponible pour toutes les versions sauf pour le n° d'identification 182383 				

8.2. Installation électrique de la variante armoire électrique

AVERTISSEMENT!

Risque de blessures dû à une installation non conforme !

L'installation non conforme peut endommager ou détruire eCONTROL type 8611.

 L'installation électrique doit être effectuée uniquement par un personnel qualifié et habilité !

Fig. 9 : Variante armoire électrique ; platine de raccordement avec bornes à ressort et cavaliers

MAN_1000141154_ML_Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

114

8.2.1. Affectation des bornes

Réglette à bornes 1

Câblage externe

MODE = 2P - T

NC / NO

NC / NO

vanne 1 A maxi

MODE = 3P - T

vanne 1 A maxi

vanne 1 A maxi

MODE = PCV

ou 3P – T

5 **O**

6 **O**

70

80

70

8 **O**

Installation électrique

Affectation

ou vanne 1

(2P – T ou 3P – T)

ou vanne 1

(2P – T ou 3P – T)

(+) vanne

(-) vanne proportionnelle

(SCV),

proportionnelle (SCV), vanne

d'échapement (PCV) ou

vanne 2 (3P - T)

vanne d'échappement (*PCV*) ou

vanne 2 (3P - T)

(+) vanne d'alimentation (PCV)

(-) vanne d'alimentation (*PCV*)

Borne

(BO3)

5

6

7

8

(BO4)

Réglette à bornes 2

Borne	Affectation	Câblage externe
9	GND – Sortie analogique	9 0 —— GND
10 (AOUT)	(+) sortie analogique (valeur de process ou grandeur de réglage vanne)	10 ○ → 4 - 20 mA / 0 - 10 V
11	GND – Capteur, élément de réglage	11 O GND
12	24 V DC Alimen- tation capteur ou élément de réglage	12 • 24 V DC
13	non affecté	non affecté
14 (<i>AIN2</i>)	(+) consigne externe de la valeur de consigne / proportion 4 - 20 mA / 0 - 10 V	14 ← 0 4 - 20 mA / 0 - 10 V (source) (21 ○ A-GND)
15	Alimentation capteur (+) 5 V DC (20 mA maxi)	15 ○ → 5 V DC (1, 11 ou 23 ○ → GND)
16	RS485_COM	16 O RS485_COM
17	RS485_A (+)	17 O RS485_A
18	RS485_B (–)	18 O RS485_B

Tab. 10 : Affectation réglette à bornes 2

Tab. 9 : Affectation réglette à bornes 1

MAN_1000141154_ML_Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

NO

MODE = PCV

vanne 1 A maxi

MODE = SCV

vanne 1.5 A maxi

NC

NC

5 **O**

6 **O**

70

8 **O**

Type 8611 Installation électrique

Réglette à bornes 3

Borne	Affectation	Câblage externe
19	GND – Pt 100, RTD	19 o ← Pt 100
20 (<i>AIN3</i>)	(+) Pt 100, RTD (alimentation en courant)	20 o (0 200 °C)
21	GND – Entrée analogique	21 O A-GND
22 (AIN1)	(+) entrée de valeur de process 4 - 20 mA / 0 - 10 V	22 ○ 4 - 20 mA / 0 - 10 V (source) 21 ○ A-GND
23	GND – Capteur, élément de réglage	23 o —— GND
24	24 V DC Alimentation capteur ou élément de réglage	24 0 → 24 V DC - Out (maxi 1 A) 23 0 GND

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

116

Commande et Fonctionnement

Affectation Câblage externe Borne Alimentation de 8611 27 Cavalier 1 Entrée de fréquence 1 Alimen-24 V DC 12 ou O (NPN ou PNP) tation NPN 24 du Type Valeur effective GND Trans-8611 du débit / 11 ou Ometteur 23 Q₁ avec (DIN1)PNP régulation 27 0 proportionnelle Cadence (MODE =RATI) Cavalier 1 Alimentation externe 27 Entrée de fréquence 1 Alimen-Alimentation (NPN ou PNP) tation NPN Valeur effective GND externe Trans-11 ou Odu débit / (DIN1)metteur 23 Q₁ avec PNP régulation 27 O GND Cadence proportionnelle (MODE =RATI)

Tab. 11 : Affectation réglette à bornes 3

9. COMMANDE ET FONCTIONNEMENT

9.1. Eléments de commande et indicateur de position

L'élément de commande et indicateur de position de eCONTROL type 8611 est doté de 3 touches et d'un affichage LCD à matrice.

Fig. 10 : Indicateurs de position

Type 8611 Commande et Fonctionnement

9.1.1. Eléments de commande

Touches fléchées

 Changement de l'affichage dans le niveau de commande process en état de marche AUTOMATIQUE

gauche droite

- Changement des options de menu en état de marche MANUEL et dans le niveau de configuration
- Saisie des valeurs numériques

Touche ENTER

- Passage entre les états de marche AUTO-MATIQUE et MANUEL
- Passage entre le niveau de commande et le niveau de configuration
- Sélection de l'option de menu
- Adopter les réglages

Vous trouverez la description détaillée de la fonction au chapitre «9.3. Fonction des touches».

9.2. Niveaux de commande et états de marche

Il existe 2 niveaux ainsi que 2 états de marche AUTOMATIQUE et MANUEL pour commander et régler eCONTROL type 8611.

Niveau 1 : Niveau de commande process

Le niveau 1 permet de passer de l'état de marche AUTO-MATIQUE à MANUEL et vice versa.

Etat de marche : AUTOMATIQUE : Le mode de régulation normal est exécuté et surveillé.

MANUEL : Accès rapide aux fonctions importantes et aux fonctions de test. L'état de marche MANUEL est affiché à l'écran par le symbole main.

Niveau 2 : Niveau de configuration

Le niveau 2 permet de modifier les réglages de base du régulateur.

Après enclenchement de la tension de service, le régulateur se trouve dans le niveau de commande process en état de marche AUTOMATIQUE.

Après application de la tension de service, la version du logiciel s'allume à l'écran pendant environ 2 secondes. La sous-version est affichée si la touche ENTER est actionnée pendant ces 2 secondes. Ensuite, le régulateur se trouve de nouveau dans le niveau de commande process.

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

Commande et Fonctionnement

9.2.1. Passage entre les niveaux de commande et les états de marche

Il est possible de passer du niveau de commande à l'état de marche en actionnant la touche ENTER (voir Fig. 11).

Les modifications au sein du niveau de configuration ne sont enregistrées qu'après retour dans le niveau de commande process.

Les modifications à l'état de marche Manuel peuvent être effectuées lorsque le régulateur est en cours de fonctionnement.

Fig. 11 : Passage du niveau de commande à l'état de marche

MAN_1000141154_ML_Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

français

9.3. Fonction des touches

L'appareil est commandé avec deux touches fléchées et une touche ENTER. Leur fonction dans le niveau de commande et l'état de marche est représentée dans le Tableau ci-après.

Niveau de commande	Etat de marche	09		ENTER
Niveau 1 : Niveau de commande	AUTOMATIQUE	Alterner l'aff la valeur eff la valeur de et de la gra réglage	fichage de ective, de consigne ndeur de	 Appuyer briè- vement sur la touche (< 1 s) : passage à l'état de marche MANUEL Appuyer long- temps sur la touche (> 5 s) : passage au niveau de configuration
Drocess	JEL	Passage à la dernière option de menu	Passage à l'option de menu suivante	 Sélection de l'option de menu Adopter les réglages
	MANL	Saisie de valeurs		 Passage à l'état de marche
		Augmenter la valeur	Retour d'un chiffre vers la gauche	AUTOMATIQUE (lorsque <i>BACK</i> est affiché)

Niveau de commande	Etat de marche	09		
		Passage à la dernière option de menu	Passage à l'option de menu suivante	 Sélection de l'option de menu Adopter les réglages
Niveau 2 : Niveau de configu- ration		Saisie de va Augmenter la valeur	aleurs Retour d'un chiffre vers la gauche	 Passage au niveau de com- mande process et à l'état de marche AUTOMATIQUE (lorsque END est affiché)

Tab. 12 : Fonction des touches

10. NIVEAU DE COMMANDE PROCESS

10.1. Etat de marche AUTOMATIQUE

Après enclenchement de la tension de service, le régulateur se trouve dans le niveau de commande process en état de marche AUTOMA-TIQUE. Le mode de régulation normal est exécuté et surveillé.

10.1.1. Affichages dans l'état de marche AUTOMATIQUE

L'appui sur les touches fléchées permet de parcourir 4 différents affichages pour surveiller le mode de régulation. Le menu *DSPL* permet de définir l'affichage qui apparaîtra au démarrage après application de la tension de service (voir structure de commande du niveau de configuration <u>Fig. 26</u>).

burkert

Fig. 12 : Affichages dans l'état de marche AUTOMATIQUE

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

10.2. Etat de marche MANUEL

L'accès à l'état de marche MANUEL est obtenu en actionnant brièvement (< 1 s) la touche ENTER.

L'état de marche est affiché à l'écran par le symbole représentant une main.

10.3. Options de menu spécifiques de la régulation de process et de la régulation proportionnelle

L'affichage de certaines options de menu est différent selon qu'il s'agit d'une régulation de process ou d'une régulation proportionnelle. Vous trouverez tous les détails à ce propos dans les descriptions de menu correspondantes.

Le type de régulation est prescrit par la sélection de la grandeur de régulation dans le menu MODE :

Régulation de process :

lorsque toutes les grandeurs de régulation sont réglées dans le menu MODE à l'exception de RATI.

Régulation proportionnelle :

lorsque la grandeur de régulation RATI a été sélectionnée dans le menu MODE

Options de menu en état de 10.4. marche MANUEL

SET	Consigne pour la régulation de process
	 L'option de menu est affichée pour la régulation de process.
	 Elle n'est pas disponible en cas de sélection de consigne externe.
RFAC	Consigne de facteur proportionnel pour la régu- lation proportionnelle • L'option de menu est affichée uniquement pour la
	 Elle n'est pas disponible en cas de sélection de consigne externe.
BACK	Si <i>BACK</i> est affiché, un bref appui sur la touche ENTER permet de passer à l'état de marche AUTOMATIQUE. L'appui sur une touche fléchée affiche l'option de menu suivante ou précédente.
TEST	Affichage des entrées et des sorties analo- giques ainsi que des entrées numériques.
PARA	Réglage des paramètres du régulateur (saisie du code nécessaire si le code de protection est activé).
VALV	Ouverture et fermeture manuelles des vannes raccordées.

Tab. 13 : Options de menu du niveau de commande process

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017 français

10.5. Structure du niveau de commande process en état de marche MANUEL

Fig. 13 : Structure du niveau de commande process en état de marche MANUEL - 1 de 2

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

Fig. 14 : Structure du niveau de commande process en état de marche MANUEL - 2 de 2

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

Niveau de configuration

11. NIVEAU DE CONFIGURATION

11.1. Structure de commande du niveau de configuration

Fig. 15 : Structure de commande du niveau de configuration - 1 de 12

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

Fig. 16 : *Structure de commande du niveau de configuration - 2 de 12*

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

Type 8611

Niveau de configuration

Fig. 17 : *Structure de commande du niveau de configuration -* 3 *de* 12

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

Fig. 18 : Structure de commande du niveau de configuration - 4 de 12

MAN_1000141154_ML_Version: GStatus: RL (released | freigegeben) printed: 22.09.2017_

Type 8611

Niveau de configuration

Fig. 19 : Structure de commande du niveau de configuration - 5 de 12

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

Fig. 20 : *Structure de commande du niveau de configuration -* 6 *de* 12

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

130

Туре 8611

Niveau de configuration

<i>FILT</i> Saisie du facteur de filtre (2 - 20)
Sélection des paramètres du régulateur * L'affichage est fonction de la grandeur de régulation réglée dans le menu <i>MODE</i> (voir Fig. 15)
PARA KP1 KP1, coefficient proportionnel 1
KP2 *) KP2, coefficient proportionnel 2
TREG *)Temps de cycle pour le régulateur [s] (affichage uniquement pour $MODE = PVC, 3P - T, 2P - T,$)
Th *) Temps de compensation [s] (affichage uniquement pour MODE = SCV, $0 - 10$, $4 - 20$, $2P - T$, $3P - T$,)
DEAD Bande morte absolue. Unité et affichage de la décimale après la virgule conformément à UNIT.
KP_T^* Coefficient proportionnel pour régulation de température en cascade (affichage uniquement pour MODE = T + F)
Temps de compensation en [s] pour régulation de température en cascade (affichage uniquement pour $MODE = T + F$)
DE_T^{*} Bande morte absolue pour régulation de température en cascade (affichage uniquement pour <i>MODE</i> = <i>T</i> + <i>F</i>).
Sens d'action
<i>INV</i> NO Régulation directe
YES Régulation inversée
Commande à zéro (Si la consigne < 2 % de la plage de consigne).
ZERO s'affiche uniquement en cas de saisie de /NV / NO
YES Commande à zéro activée
STRT *) Détermination de la valeur de démarrage pour grandeur de réglage
(affichage uniquement pour $MODE = SCV, 0 - 10, 4 - 20, 2P - T, 3P - T$)
B_IN

Fig. 21 : Structure de commande du niveau de configuration - 7 de 12

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

Fig. 22 : Structure de commande du niveau de configuration - 8 de 12

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

132

Type 8611

Niveau de configuration

Fig. 23 : Structure de commande du niveau de configuration - 9 de 12

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

Fig. 24 : Structure de commande du niveau de configuration - 10 de 12

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017 français

134

Type 8611

Niveau de configuration

MAN_1000141154_ML_Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

Réglage de l'affichage Activation du r DSPL NO Le rétroéclaira YES Le rétroéclaira Détermination CMD	étroéclairage : ge reste activé en permanence ge s'active à l'appui d'une touche et se désactive automatiquement après 60 secondes de la valeur ou de la grandeur de réglage devant être affichée après mise sous tension. Affichage de la grandeur de réglage							
ВОТН	Affichage de la valeur de consigne et de la valeur effective de process							
PVAL	Affichage de la valeur effective de process							
SETP	Affichage de la valeur de consigne							
Rétablissement des réglages usine								
FACT CODE NO								
"0003" <u>YES</u>								
$ \underbrace{U_{xx}} \text{Affichage de la version du prog} $	ramme							
B_xx Affichage de la version du logic	iel.							
Passage au niveau de commande process – Etat de marche AUTOMATIQUE								

Fig. 26 : Structure de commande du niveau de configuration - 12 de 12

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017 français

136

Aperçu des paramètres de réglage

12. APERÇU DES PARAMÈTRES DE RÉGLAGE

		Régulation continue			Régulation qu	asi-continue	Régulation discontinue		
	Élément de réglage	Vanne pro- portionnelle	Servomoteur linéaire		Vanne process	Vanne ouvert/ fermé	Vanne ouvert/ fermé action- neur rotatif	Vanne ouvert/ fermé	Vanne ouvert/ fermé
Paramètres vannes (<i>MODE</i>)	Programme MODE	SCV	0-10	4-20	PCV	2P – T	3P – T	2P – T	3P – T
	Fréquence de pilotage	PWM	[-]	[-]	[-]	[-]	[-]	[-]	[-]
	Fonction	[-]	[-]	[-]	[-]	NC/NO	NC/NO	NC/NO	NC/NO
	Temps de pilotage minimal	[-]	[-]	[-]	<i>TMN1/TMN2</i> [ms]	<i>TMN1</i> [ms]	<i>TMN1/TMN2</i> [ms]	<i>TMN1</i> [ms]	<i>TMN1/TMN2</i> [ms]

	Régulation continue				Régulation qu	asi-continue	Régulation discontinue		
	Structure de régulation	PI ou P (TN = 9999)			Р	Pl ou P (TN = 9999)		P (KP1 = 9999)	
^o aramètres régulateur (<i>PARA</i>)	Amplification	<i>KP1</i> [%/PV]	<i>KP1</i> [%/PV]		<i>KP1</i> [%/PV]	<i>KP1</i> [%/PV]	<i>KP1</i> [%/PV]	<i>KP1</i> (=9999)	<i>KP1 / KP2</i> (=9999)
	temps de compensation	<i>TN</i> [s]	<i>TN</i> [s]	<i>TN</i> [s]	[-]	<i>TN</i> [s]	<i>TN</i> [s]	[-]	[-]
	Temps de cycle	[-]	[-]	[-]	TREG [s]	TREG [s]	TREG [s]	[-]	[-]
	Bande morte	<i>DEAD</i> [∆ PV]	<i>DEAD</i> [∆ PV]	<i>DEAD</i> [∆ PV]	<i>DEAD</i> [∆ PV]	<i>DEAD</i> [∆ PV]	DEAD [Δ PV]	<i>DEAD</i> [∆ PV]	DEAD [∆ PV]
	Sens de régulation	INV (Yes/No)	INV (Yes/No)	INV (Yes/No)	INV (Yes/No)	INV (Yes/No)	INV (Yes/No)	INV (Yes/No)	INV (Yes/No)
	Commande à zéro	ZERO (Yes/No)	ZERO (Yes/No)	ZERO (Yes/No)	ZERO (Yes/No)	ZERO (Yes/No)	ZERO (Yes/No)	ZERO (Yes/No)	ZERO (Yes/No)
_	Début de la régulation	<i>STRT</i> [0-100]	<i>STRT</i> [0-10]	<i>STRT</i> [4-20]	[-]	<i>STRT</i> [0-100]	<i>STRT</i> [0-100]	[-]	[-]

Tab. 14 : Aperçu des paramètres de réglage

Paramètres régulateur pour régulation en cascade (MODE = T + F)

	Régulation continue				Régulation qu	asi-continue	Régulation discontinue		
	Structure de régulation	Pl ou P (TN = 9999)			Р	PI ou P (TN = 9999)		P (KP1 = 9999)	
mètres régu- eur (<i>PARA</i>)	Amplification	<i>KP_T</i> [%/°K]	<i>KP_T</i> [%/°K]	<i>KP_T</i> [%/°K]	<i>KP_T</i> [%/°K]	<i>KP_T</i> [%/°K]	<i>KP_T</i> [%/°K]	<i>KP_T</i> [%/°K]	<i>KP_T</i> [%/°K]
	temps de compensation	<i>TN_T</i> [s]	<i>TN_T</i> [s]	TN_T [s]	<i>TN_T</i> [s]	<i>TN_T</i> [s]	TN_T [s]	<i>TN_T</i> [s]	<i>TN_T</i> [s]
Para	Bande morte	<i>DEAD</i> [∆ °K]	<i>DEAD</i> [∆ ⁰K]	<i>DEAD</i> [Δ °K]	<i>DEAD</i> [∆ °K]	<i>DEAD</i> [∆ °K]	<i>DEAD</i> [∆ °K]	DEAD [∆ °K]	<i>DEAD</i> [Δ °K]

Tab. 15 : Aperçu : Paramètres régulateur pour régulation en cascade

13. EMBALLAGE, TRANSPORT

REMARQUE !

Dommages dus au transport !

Les appareils insuffisamment protégés peuvent être endommagés pendant le transport.

- Transportez l'appareil à l'abri de l'humidité et des impuretés et dans un emballage résistant aux chocs.
- Evitez le dépassement vers le haut ou le bas de la température de stockage admissible.

14. STOCKAGE

REMARQUE !

Un mauvais stockage peut endommager l'appareil.

- Stockez l'appareil au sec et à l'abri des poussières !
- Température de stockage : 0 ... +70 °C.

15. ÉLIMINATION

→ Éliminer l'appareil et l'emballage dans le respect de l'environnement.

REMARQUE !

Dommages à l'environnement causés par des pièces d'appareil contaminées par des fluides.

 Respecter les prescriptions en matière d'élimination des déchets et de protection de l'environnement en vigueur.

Respectez les prescriptions nationales en matière d'élimination des déchets.

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017

www.burkert.com

MAN 1000141154 ML Version: GStatus: RL (released | freigegeben) printed: 22.09.2017